Coherent rings, fp-injective modules, dualizing complexes, and covariant Serre–Grothendieck duality

被引:0
|
作者
Leonid Positselski
机构
[1] University of Haifa,Department of Mathematics, Faculty of Natural Sciences
[2] National Research University Higher School of Economics,Laboratory of Algebraic Geometry
[3] Institute for Information Transmission Problems,Sector of Algebra and Number Theory
来源
Selecta Mathematica | 2017年 / 23卷
关键词
16E35; 13D09; 16D90; 18D10;
D O I
暂无
中图分类号
学科分类号
摘要
For a left coherent ring A with every left ideal having a countable set of generators, we show that the coderived category of left A-modules is compactly generated by the bounded derived category of finitely presented left A-modules (reproducing a particular case of a recent result of Št’ovíček with our methods). Furthermore, we present the definition of a dualizing complex of fp-injective modules over a pair of noncommutative coherent rings A and B, and construct an equivalence between the coderived category of A-modules and the contraderived category of B-modules. Finally, we define the notion of a relative dualizing complex of bimodules for a pair of noncommutative ring homomorphisms A⟶R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\longrightarrow R$$\end{document} and B⟶S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\longrightarrow S$$\end{document}, and obtain an equivalence between the R / A-semicoderived category of R-modules and the S / B-semicontraderived category of S-modules. For a homomorphism of commutative rings A⟶R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\longrightarrow R$$\end{document}, we also construct a tensor structure on the R / A-semicoderived category of R-modules. A vision of semi-infinite algebraic geometry is discussed in the introduction.
引用
收藏
页码:1279 / 1307
页数:28
相关论文
共 50 条