Unbounded Sobolev trajectories and modified scattering theory for a wave guide nonlinear Schrödinger equation

被引:0
|
作者
Haiyan Xu
机构
[1] Guangdong University of Technology,School of Applied Mathematics
来源
Mathematische Zeitschrift | 2017年 / 286卷
关键词
Wave guide Schrödinger equation; Modified scattering; Energy cascade; Weak turbulence; 35Q55; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the following wave guide nonlinear Schrödinger equation, WS(i∂t+∂xx-|Dy|)U=|U|2U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (i\partial _t+\partial _{xx}-\vert D_y\vert )U=\vert U\vert ^2U\ \end{aligned}$$\end{document}on the spatial cylinder Rx×Ty\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb R}_x\times {\mathbb T}_y$$\end{document}. We establish a modified scattering theory between small solutions to this equation and small solutions to the cubic Szegő equation. The proof is an adaptation of the method of Hani et al. (Modified scattering for the cubic Schrödinger equation on product spaces and applications, 2015. arXiv:1311.2275v3). Combining this scattering theory with a recent result by Gérard and Grellier (On the growth of Sobolev norms for the cubic Szegő equation, 2015), we infer existence of global solutions to (WS) which are unbounded in the space Lx2Hys(R×T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2_xH^s_y({\mathbb R}\times {\mathbb T})$$\end{document} for every s>12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>\frac{1}{2}$$\end{document}.
引用
收藏
页码:443 / 489
页数:46
相关论文
共 50 条