Global boundedness of solutions to a two-species chemotaxis system

被引:0
|
作者
Qingshan Zhang
Yuxiang Li
机构
[1] Southeast University,Department of Mathematics
关键词
35B35; 35K55; 92C17; Two-species chemotaxis system; Global existence; Boundedness; Logistic source;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the chemotaxis system of two species which are attracted by the same signal substance ut=Δu-∇·(uχ1(w)∇w)+μ1u(1-u-a1v),x∈Ω,t>0,vt=Δv-∇·(vχ2(w)∇w)+μ2v(1-a2u-v),x∈Ω,t>0,wt=Δw-w+u+v,x∈Ω,t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{\begin{array}{lll}u_t = \Delta u - \nabla \cdot (u \chi_1(w)\nabla w) + \mu_1 u(1 - u - a_1 v), \qquad x \in \Omega, \, t >0,\\ v_t = \Delta v - \nabla \cdot (v \chi_2(w) \nabla w) + \mu_2 v(1 - a_2u - v),\qquad x \in \Omega, \, t >0,\\ w_t = \Delta w - w + u + v, \qquad \qquad \qquad \qquad \qquad \qquad\,\,\, x \in \Omega,\, t >0 \end{array}\right.$$\end{document}under homogeneous Neumann boundary conditions in a smooth bounded domain Ω⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega \subset \mathbb{R}^n}$$\end{document}. We prove that if the nonnegative initial data (u0,v0)∈(C0(Ω¯))2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(u_0, v_0) \in \big(C^0(\bar{\Omega})\big)^2}$$\end{document} and w0∈W1,r(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w_0 \in W^{1, r}(\Omega)}$$\end{document} for some r > n, the system possesses a unique global uniformly bounded solution under some conditions on the chemotaxis sensitivity functions χ1(w), χ2(w) and the logistic growth coefficients μ1, μ2.
引用
收藏
页码:83 / 93
页数:10
相关论文
共 50 条
  • [21] Global boundedness in a two-species attraction-repulsion chemotaxis system with two chemicals and nonlinear productions
    Tian, Miaoqing
    Han, Lili
    He, Xiao
    Zheng, Sining
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 76
  • [22] Two-species chemotaxis-competition system with singular sensitivity: Global existence, boundedness, and persistence
    Kurt, Halil Ibrahim
    Shen, Wenxian
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 355 : 248 - 295
  • [23] Asymptotic behavior and global existence of solutions to a two-species chemotaxis system with two chemicals
    E. Cruz
    M. Negreanu
    J. I. Tello
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [24] Global existence and asymptotic behavior of solutions to a two-species chemotaxis system with two chemicals
    Zhang, Qingshan
    Liu, Xiaopan
    Yang, Xiaofei
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (11)
  • [25] Asymptotic behavior and global existence of solutions to a two-species chemotaxis system with two chemicals
    Cruz, E.
    Negreanu, M.
    Tello, J. I.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (04):
  • [26] Boundedness in a three-dimensional two-species chemotaxis system with two chemicals
    Pan, Xu
    Wang, Liangchen
    Zhang, Jing
    Wang, Jie
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (01):
  • [27] BOUNDEDNESS IN A TWO-SPECIES QUASI-LINEAR CHEMOTAXIS SYSTEM WITH TWO CHEMICALS
    Zheng, Jiashan
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2017, 49 (02) : 463 - 480
  • [28] Boundedness in a three-dimensional two-species chemotaxis system with two chemicals
    Xu Pan
    Liangchen Wang
    Jing Zhang
    Jie Wang
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [29] Global existence of solutions to a two-species predator prey parabolic chemotaxis system
    Shanmugasundaram, Gnanasekaran
    Arumugam, Gurusamy
    Erhardt, Andre H.
    Nagarajan, Nithyadevi
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2022, 15 (08)
  • [30] Global solutions to a two-species chemotaxis system with singular sensitivity and logistic source
    Ting Huang
    Lu Yang
    Yongjie Han
    Journal of Inequalities and Applications, 2019