A General Purpose Algorithm for Counting Simple Cycles and Simple Paths of Any Length

被引:0
|
作者
Pierre-Louis Giscard
Nils Kriege
Richard C. Wilson
机构
[1] Université du Littoral Côte d’Opale,Department of Computer Science
[2] EA2597-LMPA-Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville,Department of Computer Science
[3] TU Dortmund,undefined
[4] University of York,undefined
来源
Algorithmica | 2019年 / 81卷
关键词
Simple cycles; Simple paths; Self-avoiding walks; Self-avoiding polygons; Elementary circuits; Connected induced subgraphs; Networks; Graphs; Digraphs; Labeled graphs; 68Q25; 68W40; 05C30; 05C38; 05C22;
D O I
暂无
中图分类号
学科分类号
摘要
We describe a general purpose algorithm for counting simple cycles and simple paths of any length ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} on a (weighted di)graph on N vertices and M edges, achieving an asymptotic running time of ON+M+(ℓω+ℓΔ)|Sℓ|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O\left( N+M+\big (\ell ^\omega +\ell \Delta \big ) |S_\ell |\right) $$\end{document}. In this expression, |Sℓ|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|S_\ell |$$\end{document} is the number of (weakly) connected induced subgraphs of G on at most ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} vertices, Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} is the maximum degree of any vertex and ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} is the exponent of matrix multiplication. We compare the algorithm complexity both theoretically and experimentally with most of the existing algorithms for the same task. These comparisons show that the algorithm described here is the best general purpose algorithm for the class of graphs where (ℓω-1Δ-1+1)|Sℓ|≤|Cycleℓ|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\ell ^{\omega -1}\Delta ^{-1}+1) |S_\ell |\le |\text {Cycle}_\ell |$$\end{document}, with |Cycleℓ|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\text {Cycle}_\ell |$$\end{document} the total number of simple cycles of length at most ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}, including backtracks and self-loops. On Erdős–Rényi random graphs, we find empirically that this happens when the edge probability is larger than circa 4 / N. In addition, we show that some real-world networks also belong to this class. Finally, the algorithm permits the enumeration of simple cycles and simple paths on networks where vertices are labeled from an alphabet on n letters with an asymptotic running time of ON+M+(nℓℓω+ℓΔ)|Sℓ|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O\left( N+M+\big (n^\ell \ell ^\omega +\ell \Delta \big ) |S_\ell |\right) $$\end{document}. A Matlab implementation of the algorithm proposed here is available for download.
引用
收藏
页码:2716 / 2737
页数:21
相关论文
共 50 条