Spinor-Vector duality in heterotic string orbifolds

被引:0
|
作者
Carlo Angelantonj
Alon E. Faraggi
Mirian Tsulaia
机构
[1] Dipartimento di Fisica Teorica and INFN Sezione di Torino,Department of Mathematical Sciences
[2] University of Liverpool,Centre for Particle Physics and Cosmology
[3] Ilia State University,undefined
关键词
Superstrings and Heterotic Strings; Superstring Vacua;
D O I
暂无
中图分类号
学科分类号
摘要
The three generation heterotic-string models in the free fermionic formulation are among the most realistic string vacua constructed to date, which motivated their detailed investigation. The classification of free fermion heterotic string vacua has revealed a duality under the exchange of spinor and vector representations of the SO(10) GUT symmetry over the space of models. We demonstrate the existence of the spinor-vector duality using orbifold techniques, and elaborate on the relation of these vacua to free fermionic models.
引用
收藏
相关论文
共 50 条
  • [31] T-Duality and the Weakly Coupled Heterotic String
    Gaillard, Mary K.
    SUSY09: THE 17TH INTERNATIONAL CONFERENCE ON SUPERSYMMETRY AND THE UNIFICATION OF FUNDAMENTAL INTERACTIONS, 2009, 1200 : 215 - 225
  • [32] A note on T-duality in heterotic string theory
    Serone, Marco
    Trapletti, Michele
    PHYSICS LETTERS B, 2006, 637 (4-5) : 331 - 337
  • [33] Little string theory and heterotic type II duality
    Aharony, O
    Fiol, B
    Kutasov, D
    Sahakyan, DA
    NUCLEAR PHYSICS B, 2004, 679 (1-2) : 3 - 65
  • [34] REGGE BEHAVIOR AND DAUGHTER DEGENERACIES IN FOURTH-ORDER SPINOR-VECTOR SCATTERING
    PRUM, S
    PHYSICAL REVIEW D, 1974, 9 (12): : 3517 - 3527
  • [35] The non-minimal heterotic pure spinor string in a curved background
    Chandia, Osvaldo
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (03):
  • [36] The non-minimal heterotic pure spinor string in a curved background
    Osvaldo Chandia
    Journal of High Energy Physics, 2014
  • [37] Conformality from field-string duality on Abelian orbifolds
    Frampton, PH
    PHYSICAL REVIEW D, 1999, 60 (12)
  • [38] Heterotic String Compactification and New Vector Bundles
    Hai Lin
    Baosen Wu
    Shing-Tung Yau
    Communications in Mathematical Physics, 2016, 345 : 457 - 475
  • [39] Heterotic String Compactification and New Vector Bundles
    Lin, Hai
    Wu, Baosen
    Yau, Shing-Tung
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 345 (02) : 457 - 475
  • [40] Lack of trinification in Z3 orbifolds of the SO(32) heterotic string
    Giedt, J
    MODERN PHYSICS LETTERS A, 2005, 20 (31) : 2369 - 2375