Genome annotation: from sequence to biology

被引:0
|
作者
Lincoln Stein
机构
[1] Cold Spring Harbor Laboratory,
来源
Nature Reviews Genetics | 2001年 / 2卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Now that many genome sequences are available, attention is shifting towards developing and improving approaches for genome annotation. Genome annotation can be classified into three levels: the nucleotide, protein and process levels. Gene finding is a chief aspect of nucleotide-level annotation. For complex genomes, the most successful methods use a combination of ab initio gene prediction and sequence comparison with expressed sequence databases and other organisms. Nucleotide-level annotation also allows the integration of genome sequence with other genetic and physical maps of the genome. The principal aim of protein-level annotation is to assign function to the products of the genome. Databases of protein sequences and functional domains and motifs are powerful resources for this type of annotation. Nevertheless, half of the predicted proteins in a new genome sequence tend to have no obvious function. Understanding the function of genes and their products in the context of cellular and organismal physiology is the goal of process-level annotation. One of the obstacles to this level of annotation has been the inconsistency of terms used by different model systems. The Gene Ontology Consortium is helping to solve this problem. There are several approaches to genome annotation: the factory (reliance on automation), museum (manual curation), cottage industry (exemplified by Proteome, Inc.) and party (the Celera Drosophila annotation jamboree). As more scientists come to rely on genome annotation, it will become more important for the scientific community as a whole to contribute to this continuing process.
引用
下载
收藏
页码:493 / 503
页数:10
相关论文
共 50 条
  • [21] Whole-genome sequence and annotation of Penstemon davidsonii
    Ostevik, Kate L.
    Alabady, Magdy
    Zhang, Mengrui
    Rausher, Mark D.
    G3-GENES GENOMES GENETICS, 2024, 14 (03):
  • [22] Sequence interpretation - Functional annotation of mouse genome sequences
    Nadeau, JH
    Balling, R
    Barsh, G
    Beier, D
    Brown, SDM
    Bucan, M
    Camper, S
    Carlson, G
    Copeland, N
    Eppig, J
    Fletcher, C
    Frankel, WN
    Ganten, D
    Goldowitz, D
    Goodnow, C
    Guenet, JL
    Hicks, G
    de Angelis, MH
    Jackson, I
    Jacob, HJ
    Jenkins, N
    Johnson, D
    Justice, M
    Kay, S
    Kingsley, D
    Lehrach, H
    Magnuson, T
    Meisler, M
    Poustka, AM
    Rinchik, EM
    Rossant, J
    Russell, LB
    Schimenti, J
    Shiroishi, T
    Skarnes, WC
    Soriano, P
    Stanford, W
    Takahashi, JS
    Wurst, W
    Zimmer, A
    SCIENCE, 2001, 291 (5507) : 1251 - +
  • [23] Revised Sequence and Annotation of the Rhodobacter sphaeroides 2.4.1 Genome
    Kontur, Wayne S.
    Schackwitz, Wendy S.
    Ivanova, Natalia
    Martin, Joel
    LaButti, Kurt
    Deshpande, Shweta
    Tice, Hope N.
    Pennacchio, Christa
    Sodergren, Erica
    Weinstock, George M.
    Noguera, Daniel R.
    Donohue, Timothy J.
    JOURNAL OF BACTERIOLOGY, 2012, 194 (24) : 7016 - 7017
  • [24] Application of Perl in Genome DNA Sequence Assembly and Annotation
    Zhang, Shengli
    Li, Dongfang
    Xu, Guifang
    Shan, Changjuan
    Wu, Yingxia
    Wang, Chunhu
    2011 SECOND ETP/IITA CONFERENCE ON TELECOMMUNICATION AND INFORMATION (TEIN 2011), VOL 2, 2011, : 153 - 155
  • [25] Evaluation of annotation strategies using an entire genome sequence
    Iliopoulos, I
    Tsoka, S
    Andrade, MA
    Enright, AJ
    Carroll, M
    Poullet, P
    Promponas, V
    Liakopoulos, T
    Palaios, G
    Pasquier, C
    Hamodrakas, S
    Tamames, J
    Yagnik, AT
    Tramontano, A
    Devos, D
    Blaschke, C
    Valencia, A
    Brett, D
    Martin, D
    Leroy, C
    Rigoutsos, I
    Sander, C
    Ouzounis, CA
    BIOINFORMATICS, 2003, 19 (06) : 717 - 726
  • [26] AGeS: A Software System for Microbial Genome Sequence Annotation
    Kumar, Kamal
    Desai, Valmik
    Cheng, Li
    Khitrov, Maxim
    Grover, Deepak
    Satya, Ravi Vijaya
    Yu, Chenggang
    Zavaljevski, Nela
    Reifman, Jaques
    PLOS ONE, 2011, 6 (03):
  • [27] Current challenges in genome annotation through structural biology and bioinformatics
    Furnham, Nicholas
    de Beer, Tjaart A. P.
    Thornton, Janet M.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2012, 22 (05) : 594 - 601
  • [28] Protein sequence annotation in the genome era: The annotation concept of SWISS-PROT+TREMBL
    Apweiler, R
    Gateau, A
    Contrino, S
    Martin, MJ
    Junker, V
    O'Donovan, C
    Lang, F
    Mitaritonna, N
    Kappus, S
    Bairoch, A
    ISMB-97 - FIFTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS FOR MOLECULAR BIOLOGY, PROCEEDINGS, 1997, : 33 - 43
  • [29] De Novo Whole-Genome Sequence and Genome Annotation of Lichtheimia ramosa
    Linde, Joerg
    Schwartze, Volker
    Binder, Ulrike
    Lass-Floerl, Cornelia
    Voigt, Kerstin
    Horn, Fabian
    GENOME ANNOUNCEMENTS, 2014, 2 (05)
  • [30] From Cullowhee Creek to Conley: genome sequence and annotation of a cluster DJ Gordonia phage
    Andro, Mindy N.
    Cansler, A. J. J.
    Conley, Olivia S.
    Cruz, Naidelyn O.
    Dionne, Joshua A.
    Edwards, Jordan I.
    Furtuna, Daniel
    Green, Carlee J.
    Huber, Miriam
    Hudson, Gunnar J.
    Humphries, Isabella R.
    Karazin, Amanda A.
    Mombille, Patrizia I.
    Pell, Montana M.
    Shickle, Gabriela
    Shipp, Zahria J.
    Timmons, Chloe A.
    Trembush, Jasmine I.
    Turnmire, Cameron D.
    Yemofio, Naa Yemoley
    Burleson, Mathew D.
    Gainey, Maria D.
    MICROBIOLOGY RESOURCE ANNOUNCEMENTS, 2024, 13 (02):