Isotropic Lagrangian Submanifolds in Complex Euclidean Space and Complex Hyperbolic Space

被引:1
|
作者
Haizhong Li
Xianfeng Wang
机构
[1] Tsinghua University,Department of Mathematical Sciences
来源
Results in Mathematics | 2009年 / 56卷
关键词
Primary 53C20; Secondary 53C42; Isotropic submanifolds; Lagrangian submanifolds; complex Euclidean space; complex hyperbolic space;
D O I
暂无
中图分类号
学科分类号
摘要
The notion of isotropic submanifolds of an arbitrary Riemannian manifold was first introduced by B. O’Neill in [12]. In our paper, we give a complete classification of isotropic Lagrangian submanifolds in complex Euclidean space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}}^n$$\end{document} and complex hyperbolic space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{CH}}^n$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Lagrangian submanifolds in complex projective space CPn
    Xiaoxiang Jiao
    Chiakuei Peng
    Xiaowei Xu
    [J]. Frontiers of Mathematics in China, 2012, 7 : 1129 - 1140
  • [22] WILLMORE LAGRANGIAN SUBMANIFOLDS IN COMPLEX PROJECTIVE SPACE
    Shu, Shichang
    Liu, Sanyang
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (02): : 343 - 357
  • [23] Lagrangian submanifolds in complex projective space CPn
    Jiao, Xiaoxiang
    Peng, Chiakuei
    Xu, Xiaowei
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2012, 7 (06) : 1129 - 1140
  • [24] Lagrangian submanifolds in 3-dimensional complex space forms with isotropic cubic tensor
    Wang, Xianfeng
    Li, Haizhong
    Vrancken, Luc
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2011, 18 (03) : 431 - 451
  • [25] Complex extensors and Lagrangian submanifolds in complex Euclidean spaces
    Chen, BY
    [J]. TOHOKU MATHEMATICAL JOURNAL, 1997, 49 (02) : 277 - 297
  • [26] Calabi Product Lagrangian Immersions in Complex Projective Space and Complex Hyperbolic Space
    Haizhong Li
    Xianfeng Wang
    [J]. Results in Mathematics, 2011, 59 : 453 - 470
  • [27] Calabi Product Lagrangian Immersions in Complex Projective Space and Complex Hyperbolic Space
    Li, Haizhong
    Wang, Xianfeng
    [J]. RESULTS IN MATHEMATICS, 2011, 59 (3-4) : 453 - 470
  • [28] Submanifolds of some Hartogs domain and the complex Euclidean space
    Zhang, Xu
    Ji, Donghai
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (11) : 1899 - 1905
  • [29] Lagrangian submanifolds of the complex hyperbolic quadric
    Joeri Van der Veken
    Anne Wijffels
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2021, 200 : 1871 - 1891
  • [30] Lagrangian submanifolds of the complex hyperbolic quadric
    van der Veken, Joeri
    Wijffels, Anne
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (05) : 1871 - 1891