spSeudoMap: cell type mapping of spatial transcriptomics using unmatched single-cell RNA-seq data

被引:0
|
作者
Sungwoo Bae
Hongyoon Choi
Dong Soo Lee
机构
[1] Seoul National University,Institute of Radiation Medicine, Medical Research Center
[2] Seoul National University Hospital,Department of Nuclear Medicine
[3] Seoul National University College of Medicine,Department of Nuclear Medicine
[4] Portrai,undefined
[5] Inc.,undefined
来源
关键词
Spatial transcriptomics; Single-cell RNA-seq; Cell sorting; Cell type mapping; Synthetic cell mixture; Pseudobulk;
D O I
暂无
中图分类号
学科分类号
摘要
Since many single-cell RNA-seq (scRNA-seq) data are obtained after cell sorting, such as when investigating immune cells, tracking cellular landscape by integrating single-cell data with spatial transcriptomic data is limited due to cell type and cell composition mismatch between the two datasets. We developed a method, spSeudoMap, which utilizes sorted scRNA-seq data to create virtual cell mixtures that closely mimic the gene expression of spatial data and trains a domain adaptation model for predicting spatial cell compositions. The method was applied in brain and breast cancer tissues and accurately predicted the topography of cell subpopulations. spSeudoMap may help clarify the roles of a few, but crucial cell types.
引用
收藏
相关论文
共 50 条
  • [41] SCnorm: robust normalization of single-cell RNA-seq data
    Bacher, Rhonda
    Chu, Li-Fang
    Leng, Ning
    Gasch, Audrey P.
    Thomson, James A.
    Stewart, Ron M.
    Newton, Michael
    Kendziorski, Christina
    NATURE METHODS, 2017, 14 (06) : 584 - +
  • [42] Quantifying the clusterness and trajectoriness of single-cell RNA-seq data
    Lim, Hong Seo
    Qiu, Peng
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (02)
  • [43] Evaluating imputation methods for single-cell RNA-seq data
    Cheng, Yi
    Ma, Xiuli
    Yuan, Lang
    Sun, Zhaoguo
    Wang, Pingzhang
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [44] Challenges in unsupervised clustering of single-cell RNA-seq data
    Kiselev, Vladimir Yu
    Andrews, Tallulah S.
    Hemberg, Martin
    NATURE REVIEWS GENETICS, 2019, 20 (05) : 273 - 282
  • [45] Testing for Phylogenetic Signal in Single-Cell RNA-Seq Data
    Moravec, Jiri C.
    Lanfear, Robert
    Spector, David L.
    Diermeier, Sarah D.
    Gavryushkin, Alex
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2023, 30 (04) : 518 - 537
  • [46] Locality Sensitive Imputation for Single-Cell RNA-Seq Data
    Moussa, Marmar
    Mandoiu, Ion I.
    BIOINFORMATICS RESEARCH AND APPLICATIONS, ISBRA 2018, 2018, 10847 : 347 - 360
  • [47] Supervised Adversarial Alignment of Single-Cell RNA-seq Data
    Ge, Songwei
    Wang, Haohan
    Alavi, Amir
    Xing, Eric
    Bar-Joseph, Ziv
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2021, 28 (05) : 501 - 513
  • [48] Phylogenetic inference from single-cell RNA-seq data
    Xuan Liu
    Jason I. Griffiths
    Isaac Bishara
    Jiayi Liu
    Andrea H. Bild
    Jeffrey T. Chang
    Scientific Reports, 13
  • [49] Phylogenetic inference from single-cell RNA-seq data
    Liu, Xuan
    Griffiths, Jason I.
    Bishara, Isaac
    Liu, Jiayi
    Bild, Andrea H.
    Chang, Jeffrey T.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [50] PsiNorm: a scalable normalization for single-cell RNA-seq data
    Borella, Matteo
    Martello, Graziano
    Risso, Davide
    Romualdi, Chiara
    BIOINFORMATICS, 2022, 38 (01) : 164 - 172