The p-adic Corlette–Simpson correspondence for abeloids

被引:0
|
作者
Ben Heuer
Lucas Mann
Annette Werner
机构
[1] Universität Bonn,Mathematisches Institut
[2] Goethe-Universität Frankfurt,Institut für Mathematik
来源
Mathematische Annalen | 2023年 / 385卷
关键词
14K15; 14G45; 14G22;
D O I
暂无
中图分类号
学科分类号
摘要
For an abeloid variety A over a complete algebraically closed field extension K of Qp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}_p$$\end{document}, we construct a p-adic Corlette–Simpson correspondence, namely an equivalence between finite-dimensional continuous K-linear representations of the Tate module and a certain subcategory of the Higgs bundles on A. To do so, our central object of study is the category of vector bundles for the v-topology on the diamond associated to A. We prove that any pro-finite-étale v-vector bundle can be built from pro-finite-étale v-line bundles and unipotent v-bundles. To describe the latter, we extend the theory of universal vector extensions to the v-topology and use this to generalise a result of Brion by relating unipotent v-bundles on abeloids to representations of vector groups.
引用
收藏
页码:1639 / 1676
页数:37
相关论文
共 50 条