An Effect of Molecular Motion on Carrier Formation in a Poly(3-hexylthiophene) Film

被引:0
|
作者
Yudai Ogata
Daisuke Kawaguchi
Keiji Tanaka
机构
[1] Kyushu University,Department of Applied Chemistry
[2] Education Center for Global Leaders in Molecular Systems for Devices,undefined
[3] Kyushu University,undefined
[4] International Institute for Carbon-Neutral Energy Research (WPI-I2CNER),undefined
[5] Kyushu University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Free carriers, polarons (P), in conjugated polymers play a key role in the performance of optoelectronic devices. Here, we present solid evidence that P can be predominantly generated from polaron pairs (PP) in a poly(3-hexylthiophene) (P3HT) film under zero electric field. P formation from PP strongly depends on temperature. The temperature dependence of P starts to change around 300 K. P3HT exhibits a thermal molecular motion named the α1 relaxation process, in which the twisting motion of thiophene rings is released, in this temperature region. Thus, it can be claimed that the twisting motion of P3HT thiophene rings is one of the determining factors of the photodynamics of P in P3HT films. This finding holds true for poly(thiophene)s with different alkyl lengths and should be considered in the design and construction of highly-functionalized organic devices based on poly(thiophene)s.
引用
收藏
相关论文
共 50 条
  • [41] Impact of molecular weight on the solubility parameters of poly(3-hexylthiophene)
    Spann, Rashawn
    Boucher, David
    JOURNAL OF POLYMER SCIENCE, 2023, 61 (06) : 503 - 514
  • [42] Molecular Weight Dependence of Exciton Diffusion in Poly(3-hexylthiophene)
    Masri, Zarifi
    Ruseckas, Arvydas
    Emelianova, Evguenia V.
    Wang, Linjun
    Bansal, Ashu K.
    Matheson, Andrew
    Lemke, Henrik T.
    Nielsen, Martin M.
    Ha Nguyen
    Coulembier, Olivier
    Dubois, Philippe
    Beljonne, David
    Samuel, Ifor D. W.
    ADVANCED ENERGY MATERIALS, 2013, 3 (11) : 1445 - 1453
  • [43] Improved Force Field for Molecular Modeling of Poly(3-hexylthiophene)
    Bhatta, Ram S.
    Yimer, Yeneneh Y.
    Perry, David S.
    Tsige, Mesfin
    JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (34): : 10035 - 10045
  • [44] The Influence of Molecular Configuration on the Thermoelectrical Properties of Poly(3-hexylthiophene)
    Sanyin Qu
    Qin Yao
    Wei Shi
    Liming Wang
    Lidong Chen
    Journal of Electronic Materials, 2016, 45 : 1389 - 1396
  • [45] Using scanning probe microscopy to study the effect of molecular weight of poly(3-hexylthiophene) on the performance of poly(3-hexylthiophene):TiO2 nanorod photovoltaic devices
    Wu, Ming-Chung
    Lo, Hsi-Hsing
    Liao, Hsueh-Chung
    Chen, Sharon
    Lin, Yun-Yue
    Yen, Wei-Che
    Zeng, Tsung-Wei
    Chen, Yang-Fang
    Chen, Chun-Wei
    Su, Wei-Fang
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2009, 93 (6-7) : 869 - 873
  • [46] Hydrostatic pressure effects on poly(3-hexylthiophene) thin film transistors
    Schroepfer, Dominic D.
    Ruden, P. Paul
    Xia, Yu
    Frisbie, C. Daniel
    Shaheen, Sean E.
    APPLIED PHYSICS LETTERS, 2008, 92 (01)
  • [47] Conducting Channel Formation in Poly(3-hexylthiophene) Field Effect Transistors: Bulk to Interface
    Park, Byoungnam
    Aiyar, Avishek
    Park, Min Sang
    Srinivasarao, Mohan
    Reichmanis, Elsa
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (23): : 11719 - 11726
  • [48] Molecular weight effect on surface and bulk structure of poly(3-hexylthiophene) thin films
    Matsumoto, Takuya
    Nishi, Keishirou
    Tamba, Shunsuke
    Kotera, Masaru
    Hongo, Chizuru
    Mori, Atsunori
    Nishino, Takashi
    POLYMER, 2017, 119 : 76 - 82
  • [49] Effect of molecular p-doping on hole density and mobility in poly(3-hexylthiophene)
    Pingel, P.
    Schwarzl, R.
    Neher, D.
    APPLIED PHYSICS LETTERS, 2012, 100 (14)
  • [50] Characterization and Distribution of Poly(3-hexylthiophene) Phases in an Annealed Blend Film
    Hu, Rong
    Zhang, Wei
    Wang, Peng
    Qin, Yujun
    Liang, Ran
    Fu, Li-Min
    Zhang, Jian-Ping
    Ai, Xi-Cheng
    CHEMPHYSCHEM, 2014, 15 (05) : 935 - 941