Superlinear Convergence of a Stabilized SQP Method to a Degenerate Solution

被引:0
|
作者
Stephen J. Wright
机构
[1] Argonne National Laboratory,Mathematics and Computer Science Division
来源
Computational Optimization and Applications | 1998年 / 11卷
关键词
nonlinear programming; sequential quadratic programming; degenerate solutions;
D O I
暂无
中图分类号
学科分类号
摘要
We describe a slight modification of the well-known sequential quadratic programming method for nonlinear programming that attains superlinear convergence to a primal-dual solution even when the Jacobian of the active constraints is rank deficient at the solution. We show that rapid convergence occurs even in the presence of the roundoff errors that are introduced when the algorithm is implemented in floating-point arithmetic.
引用
收藏
页码:253 / 275
页数:22
相关论文
共 50 条
  • [31] 2-STEP AND 3-STEP Q-SUPERLINEAR CONVERGENCE OF SQP METHODS
    RUSTEM, B
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1994, 83 (03) : 613 - 619
  • [32] ON THE LOCAL AND SUPERLINEAR CONVERGENCE OF A PARAMETERIZED DFP METHOD
    Zhang, Lei-Hong
    Pan, Ping-Qi
    Zhang, Shi-Pei
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2014, 35 (01) : 111 - 132
  • [33] Reaching the superlinear convergence phase of the CG method
    Axelsson, O.
    Karatson, J.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 260 : 244 - 257
  • [34] Stabilized SQP revisited
    Izmailov, A. F.
    Solodov, M. V.
    MATHEMATICAL PROGRAMMING, 2012, 133 (1-2) : 93 - 120
  • [35] Stabilized SQP revisited
    A. F. Izmailov
    M. V. Solodov
    Mathematical Programming, 2012, 133 : 93 - 120
  • [36] Modifying SQP for degenerate problems
    Wright, SJ
    SIAM JOURNAL ON OPTIMIZATION, 2002, 13 (02) : 470 - 497
  • [37] On the Superlinear Convergence of Newton's Method on Riemannian Manifolds
    Fernandes, Teles A.
    Ferreira, Orizon P.
    Yuan, Jinyun
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 173 (03) : 828 - 843
  • [38] On the Superlinear Convergence of Newton’s Method on Riemannian Manifolds
    Teles A. Fernandes
    Orizon P. Ferreira
    Jinyun Yuan
    Journal of Optimization Theory and Applications, 2017, 173 : 828 - 843
  • [39] ON SUPERLINEAR CONVERGENCE OF SOME STABLE VARIANTS OF THE SECANT METHOD
    BURDAKOV, OP
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1986, 66 (12): : 615 - 622
  • [40] ON THE GLOBAL AND SUPERLINEAR CONVERGENCE OF A DISCRETIZED VERSION OF WILSONS METHOD
    KLEINMICHEL, H
    RICHTER, C
    SCHONEFELD, K
    COMPUTING, 1982, 29 (04) : 289 - 307