Optimal Exponential Decay for the Linearized Ellipsoidal BGK Model in Weighted Sobolev Spaces

被引:0
|
作者
Fucai Li
Baoyan Sun
机构
[1] Nanjing University,Department of Mathematics
[2] Yantai University,School of Mathematics and Information Sciences
来源
关键词
Ellipsoidal BGK model; Polynomial weight; Spectral gap; Exponential rate; 82C40; 47H20; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the asymptotic behavior of solution to the linearized ellipsoidal BGK model in torus. We prove that the solution converges exponentially to the equilibrium in the weighted Sobolev spaces with polynomial weight. Our exponential decay rate e-λt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e^{-\lambda t}$$\end{document} is optimal in the sense that λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document} equals to the spectral gap of the linearized operator in the standard Hilbert space. Our strategy is taking advantage of the quantitative spectral gap estimates in a smaller reference Hilbert space, the factorization method, and the enlargement of the functional space for the associated semigroup.
引用
收藏
页码:690 / 714
页数:24
相关论文
共 21 条