Analysis of linearized elasticity models with point sources in weighted Sobolev spaces: applications in tissue contraction

被引:2
|
作者
Boon, Wietse M. [1 ]
Vermolen, Fred J. [2 ]
机构
[1] Politecn Milan, Lab Modeling & Sci Comp MOX, P Za Leonardo Vinci 32, I-20133 Milan, Italy
[2] Univ Hasselt, Dept Math & Stat, Computat Math Grp, Agoralaan Bldg D, B-3590 Diepenbeek, Belgium
关键词
Point source; weighted Sobolev space; linearized elasticity; FINITE-ELEMENT-METHOD; FUNDAMENTAL-SOLUTIONS; ELLIPTIC PROBLEM; APPROXIMATION;
D O I
10.1051/m2an/2023055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In order to model the contractive forces exerted by fibroblast cells in dermal tissue, we propose and analyze two modeling approaches under the assumption of linearized elasticity. The first approach introduces a collection of point forces on the boundary of the fibroblast whereas the second approach employs an isotropic stress point source in its center. We analyze the resulting partial differential equations in terms of weighted Sobolev spaces and identify the singular behavior of the respective solutions. Two finite element method approaches are proposed, one based on a direct application and another in which the singularity is subtracted and a correction field is computed. Finally, we confirm the validity of the modeling approach, demonstrate convergence of the numerical methods, and verify the analysis through the use of numerical experiments.
引用
收藏
页码:2349 / 2370
页数:22
相关论文
共 50 条
  • [1] GENERALIZED WEIGHTED SOBOLEV SPACES AND APPLICATIONS TO SOBOLEV ORTHOGONAL POLYNOMIALS Ⅱ
    JoséM.Rodriguez
    ElenaRomeraandDomingoPestana
    VenancioAlvarez
    ApproximationTheoryandItsApplications, 2002, (02) : 1 - 32
  • [2] Generalized Weighted Sobolev Spaces and Applications to Sobolev Orthogonal Polynomials I
    José M. Rodríguez
    Venancio Álvarez
    Elena Romera
    Domingo Pestana
    Acta Applicandae Mathematica, 2004, 80 : 273 - 308
  • [3] Generalized weighted Sobolev spaces and applications to Sobolev orthogonal polynomials:: A survey
    Rodriguez, Jose M.
    Alvarez, Venancio
    Romera, Elena
    Pestana, Domingo
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2006, 24 : 88 - 93
  • [4] Generalized weighted Sobolev spaces and applications to Sobolev orthogonal polynomials I
    Rodríguez, JM
    Alvarez, V
    Romera, E
    Pestana, D
    ACTA APPLICANDAE MATHEMATICAE, 2004, 80 (03) : 273 - 308
  • [5] Optimal Exponential Decay for the Linearized Ellipsoidal BGK Model in Weighted Sobolev Spaces
    Fucai Li
    Baoyan Sun
    Journal of Statistical Physics, 2020, 181 : 690 - 714
  • [6] Optimal Exponential Decay for the Linearized Ellipsoidal BGK Model in Weighted Sobolev Spaces
    Li, Fucai
    Sun, Baoyan
    JOURNAL OF STATISTICAL PHYSICS, 2020, 181 (02) : 690 - 714
  • [7] Extension theorems on weighted Sobolev spaces and some applications
    Chua, Seng-Kee
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2006, 58 (03): : 492 - 528
  • [8] A posteriori error estimates with point sources in fractional sobolev spaces
    Gaspoz, F. D.
    Morin, P.
    Veeser, A.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (04) : 1018 - 1042
  • [9] Embedding theorems for weighted Sobolev spaces in a borderline case and applications
    Carvalho, J. L.
    Furtado, M. F.
    Medeiros, E. S.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (01) : 345 - 359
  • [10] Embedding theorems for weighted Sobolev spaces in a borderline case and applications
    J. L. Carvalho
    M. F. Furtado
    E. S. Medeiros
    Annali di Matematica Pura ed Applicata (1923 -), 2024, 203 : 345 - 359