Influence of graphene oxide nanosheets on the stability and thermal conductivity of nanofluidsInsights from molecular dynamics simulations

被引:0
|
作者
Mir-Shahabeddin Izadkhah
Hamid Erfan-Niya
Saeed Zeinali Heris
机构
[1] University of Tabriz,Department of Chemical and Petroleum Engineering
关键词
Nanofluid; Graphene oxide; Stability; Reverse non-equilibrium molecular dynamics; Thermal conductivity;
D O I
暂无
中图分类号
学科分类号
摘要
Many theoretical and experimental studies on heat transfer and flow behavior of nanofluids have been conducted, and the results show that nanofluids significantly enhance heat transfer. However, less attention has been paid to obtain the thermal conductivity of nanofluids and their stability using molecular simulations which are applied by investigators to explain the molecular mechanisms of nanoscale phenomena. In this work, the stability of water–ethylene glycol-based graphene oxide (GO) nanofluids was investigated by classical molecular dynamics simulations in which the kinetic energy, radial distribution function and intensity diagrams were obtained. The obtained results confirmed the stability of nanofluids. Also, the thermal conductivity of nanofluids was studied by reverse non-equilibrium molecular dynamics method at different ratios of water–ethylene glycol as base fluids and various amounts of graphene oxide as nanoparticles. The results show that the thermal conductivity of nanofluids increases with the amount of graphene oxide nanosheets. For example, the thermal conductivity of water–ethylene glycol (75/25%)-based nanofluid containing 3, 4 and 5% of GO nanosheets was increased by 24, 28 and 33%, respectively, at 46.7 °C. Finally, the theoretical models on heat transfer and flow behavior of nanofluids were employed to validate the molecular simulation results. The obtained thermal conductivity results are in good agreement with theoretical models.
引用
收藏
页码:581 / 595
页数:14
相关论文
共 50 条
  • [41] Investigation of thermal conductivity and mechanical properties in multi-layer of graphene and graphene oxide: a molecular dynamics study
    Salehi, Arman
    Ghaderiazar, Nima
    Rash-Ahmadi, Samrand
    MOLECULAR SIMULATION, 2024, 50 (13) : 954 - 968
  • [42] Thermal conductivity and thermal rectification of nanoporous graphene: A molecular dynamics simulation
    Yousefi, Farrokh
    Khoeini, Farhad
    Rajabpour, Ali
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 146
  • [43] Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons: A Molecular Dynamics Study
    Hu, Jiuning
    Ruan, Xiulin
    Chen, Yong P.
    NANO LETTERS, 2009, 9 (07) : 2730 - 2735
  • [44] Molecular dynamics simulations of the effect of dislocations on the thermal conductivity of iron
    Sun, Yandong
    Zhou, Yanguang
    Han, Jian
    Hu, Ming
    Xu, Ben
    Liu, Wei
    JOURNAL OF APPLIED PHYSICS, 2020, 127 (04)
  • [45] Thermal conductivity of silicon nanowire by nonequilibrium molecular dynamics simulations
    Wang, Shuai-chuang
    Liang, Xin-gang
    Xu, Xiang-hua
    PROCEEDINGS OF THE MICRO/NANOSCALE HEAT TRANSFER INTERNATIONAL CONFERENCE 2008, PTS A AND B, 2008, : 1155 - 1161
  • [46] Thermal Conductivity of Polyethylene Chains Using Molecular Dynamics Simulations
    Henry, Asegun
    Chen, Gang
    PROCEEDINGS OF THE 3RD ENERGY NANOTECHNOLOGY INTERNATIONAL CONFERENCE, 2009, : 75 - 78
  • [47] Molecular dynamics simulations of the effect of dislocations on the thermal conductivity of iron
    Sun, Yandong
    Zhou, Yanguang
    Han, Jian
    Hu, Ming
    Xu, Ben
    Liu, Wei
    Journal of Applied Physics, 2020, 127 (04):
  • [48] Thermal conductivity of silicon nanowire by nonequilibrium molecular dynamics simulations
    Wang, Shuai-chuang
    Liang, Xin-gang
    Xu, Xiang-hua
    Ohara, Taku
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (01)
  • [49] Enhanced Thermal Conductivity of Nanofluids Diagnosis by Molecular Dynamics Simulations
    Teng, Kuo-Liang
    Hsiaol, Pai-Yi
    Hung, Shih-Wei
    Chieng, Ching-Chang
    Liu, Ming-Shen
    Lu, Ming-Chang
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2008, 8 (07) : 3710 - 3718
  • [50] Thermal stability of benzorods: Molecular-dynamics simulations
    Malcioglu, OB
    Erkoc, S
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2005, 24 (03): : 213 - 218