Sodium azide induced high-oleic peanut (Arachis hypogaea L.) mutant of Virginia type

被引:0
|
作者
Rivalani Theorent Nkuna
Chuan Tang Wang
Xiu Zhen Wang
Yue Yi Tang
Zhi Wei Wang
Jian Cheng Zhang
机构
[1] Jilin Agricultural University.,
[2] Shandong Luhua Group Company,undefined
[3] Shandong Peanut Research Institute,undefined
来源
关键词
Chemical mutagenesis; Peanut; Virginia type; Export; High oleic;
D O I
暂无
中图分类号
学科分类号
摘要
Less prone to oxidation than its conventional counterpart, high-oleic peanut (Arachis hypogaea L.) containing ≥ 72% oleate and < 8% linoleate is preferred by processors, seed sellers and consumers. Development of high-oleic peanut cultivars with suitable pod/seed size and shape may satisfy the need from food processors manufacturing whole kernel or halve products. In this study, a high-oleic Virginia type peanut mutant was identified through screening of a 15 mmol/L sodium azide mutagenized M3 population with near infrared spectroscopy. Sequencing of the mutated and wild type FAD2A/FAD2B genes detected 2 point mutations. The G448A mutation in FAD2A was the same as in previous reports, causing an amino acid change of D150N. G558A in FAD2B was a novel mutation, resulting in a stop codon and premature termination of protein synthesis. 16 promising lines with acceptable productivity and pod/seed characters have been tentatively bred, which will be evaluated further in yield tests with replications after seed increase.
引用
收藏
页码:1759 / 1767
页数:8
相关论文
共 50 条
  • [31] Development of a Rapid Regeneration Method for Runner-type peanut (Arachis hypogaea L.).
    Dang, P. M.
    Chen, C. Y.
    Lamb, M. C.
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2012, 48 : 72 - 72
  • [32] Effect of silver nitrate on organogenesis of peanut (Arachis hypogaea L.)
    Ozudogru, E. A.
    Ozden-Tokatli, Y.
    Akcin, A.
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2004, 40 : 46A - 46A
  • [33] Nutritional composition of new peanut (Arachis hypogaea L.) cultivars
    Campos-Mondragon, M. G.
    Calderon De La Barca, A. M.
    Duran-Prado, A.
    Campos-Reyes, L. C.
    Oliart-Ros, R. M.
    Ortega-Garcia, J.
    Medina-Juarez, L. A.
    Angulo, O.
    GRASAS Y ACEITES, 2009, 60 (02) : 161 - 167
  • [34] Diclosulam systems for weed management in peanut (Arachis hypogaea L.)
    Bailey, WA
    Wilcut, JW
    WEED TECHNOLOGY, 2002, 16 (04) : 807 - 814
  • [35] The genome donors of the groundnut/peanut (Arachis hypogaea L.) revisited
    A.K. Singh
    J. Smartt
    Genetic Resources and Crop Evolution, 1998, 45 : 113 - 116
  • [36] The genome donors of the groundnut/peanut (Arachis hypogaea L.) revisited
    Singh, AK
    Smartt, J
    GENETIC RESOURCES AND CROP EVOLUTION, 1998, 45 (02) : 113 - 118
  • [37] PHOTOCONTROL OF PEANUT (ARACHIS HYPOGAEA L.) OVULE DEVELOPMENT IN VITRO
    Thompson, L. K.
    Ziv, M.
    Deitzer, G. F.
    PLANT PHYSIOLOGY, 1984, 75 : 79 - 79
  • [38] Purification and characterization of a chitinase from peanut (Arachis hypogaea L.)
    Wang, Shaoyun
    Shao, Biao
    Ye, Xiuyun
    Rao, Pingfran
    JOURNAL OF FOOD BIOCHEMISTRY, 2008, 32 (01) : 32 - 45
  • [39] Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.)
    Guohao He
    Ronghua Meng
    Melanie Newman
    Guoqing Gao
    Roy N Pittman
    CS Prakash
    BMC Plant Biology, 3 (1)
  • [40] Transcriptome analysis of alternative splicing in peanut (Arachis hypogaea L.)
    Ruan, Jian
    Guo, Feng
    Wang, Yingying
    Li, Xinguo
    Wan, Shubo
    Shan, Lei
    Peng, Zhenying
    BMC PLANT BIOLOGY, 2018, 18