On the band-structure lineup at Ga2O3, Gd2O3, and Ga2O3(Gd2O3) heterostructures and Ga2O3 Schottky contacts

被引:0
|
作者
Winfried Mönch
机构
[1] Universität Duisburg-Essen,Faculty of Physics
关键词
Barrier Height; Ga2O3; Gd2O3; Schottky Contact; Semiconductor Heterostructures;
D O I
暂无
中图分类号
学科分类号
摘要
The interface-induced gap states (IFIGS) are the fundamental mechanism that determines the band-structure lineup at semiconductor interfaces, i.e., the band-edge offsets at semiconductor heterostructures and the barrier heights of metal–semiconductor or Schottky contacts. Both quantities are composed of a zero-charge transfer and an electrostatic-dipole term which are given by the IFIGS’s branch-point energies and the electronegativities of the two solids in contact, respectively. A respective analysis of experimental valence-band offsets of Ga2O3 and Gd2O3 heterostructures results in the empirical p-type branch-point energies of 3.57 and 2.85 eV, respectively. From experimental barrier heights of n-Ga2O3 Schottky contacts an empirical n-type branch-point energy of 1.34 eV is obtained. The p- and n-type branch point energies of Ga2O3 add up to 4.91 eV, the width of the Ga2O3 band gap, as to be expected from the theoretical IFIGS-and-electronegativity concept. The experimental valence-band offsets of Ga2O3(Gd2O3) heterostructures indicate that at their interfaces the chemical composition of the oxide differs from its nominal value in the bulk.
引用
收藏
页码:1444 / 1448
页数:4
相关论文
共 50 条
  • [21] Demonstration of GaN MIS diodes by using AlN and Ga2O3(Gd2O3) as dielectrics
    Ren, F
    Abernathy, CR
    MacKenzie, JD
    Gila, BP
    Pearton, SJ
    Hong, M
    Marcus, MA
    Schurman, MJ
    Baca, AG
    Shul, RJ
    SOLID-STATE ELECTRONICS, 1998, 42 (12) : 2177 - 2181
  • [22] Advances in GaAs MOSFET's using Ga2O3(Gd2O3) as gate oxide
    Wang, YC
    Hong, M
    Kuo, JM
    Mannaerts, JP
    Kwo, J
    Tsai, HS
    Krajewski, JJ
    Weiner, JS
    Chen, YK
    Cho, AY
    COMPOUND SEMICONDUCTOR SURFACE PASSIVATION AND NOVEL DEVICE PROCESSING, 1999, 573 : 219 - 225
  • [23] -Ga2O3
    Modak, Sushrut
    Chernyak, Leonid
    Schulte, Alfons
    Xian, Minghan
    Ren, Fan
    Pearton, Stephen J.
    Ruzin, Arie
    Kosolobov, Sergey S.
    Drachev, Vladimir P.
    AIP ADVANCES, 2021, 11 (12)
  • [24] Proton irradiation Of Ga2O3 Schottky diodes and NiO/Ga2O3 heterojunctions
    Polyakov, Alexander Y.
    Saranin, Danila S.
    Shchemerov, Ivan V.
    Vasilev, Anton A.
    Romanov, Andrei A.
    Kochkova, Anastasiia I.
    Gostischev, Pavel
    Chernykh, Alexey V.
    Alexanyan, Luiza A.
    Matros, Nikolay R.
    Lagov, Petr B.
    Doroshkevich, Aleksandr S.
    Isayev, Rafael Sh.
    Pavlov, Yu. S.
    Kislyuk, Alexander M.
    Yakimov, Eugene B.
    Pearton, Stephen J.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [25] MOCVD Growth of β-Ga2O3 on (001) Ga2O3 Substrates
    Meng, Lingyu
    Yu, Dongsu
    Huang, Hsien-Lien
    Chae, Chris
    Hwang, Jinwoo
    Zhao, Hongping
    CRYSTAL GROWTH & DESIGN, 2024, 24 (09) : 3737 - 3745
  • [26] Twin-induced phase transition from β-Ga2O3 to α-Ga2O3 in Ga2O3 thin films
    Choi, Byeongdae
    Allabergenov, Bunyod
    Lyu, Hong-Kun
    Lee, Seong Eui
    APPLIED PHYSICS EXPRESS, 2018, 11 (06)
  • [27] Nitrided HfTiON/Ga2O3(Gd2O3) as stacked gate dielectric for GaAs MOS applications
    Wang, Li-Sheng
    Xu, Jing-Ping
    Liu, Lu
    Tang, Wing-Man
    Lai, Pui-To
    APPLIED PHYSICS EXPRESS, 2014, 7 (06)
  • [28] The Growth of an Epitaxial ZnO Film on Si(111) with a Gd2O3(Ga2O3) Buffer Layer
    Lin, B. H.
    Liu, W. R.
    Yang, S.
    Kuo, C. C.
    Hsu, C. -H.
    Hsieh, W. F.
    Lee, W. C.
    Lee, Y. J.
    Hong, M.
    Kwo, J.
    CRYSTAL GROWTH & DESIGN, 2011, 11 (07) : 2846 - 2851
  • [29] GaAs MOSFET using MBE-grown Ga2O3 (Gd2O3) as gate oxide
    Kim, SJ
    Park, JW
    Hong, M
    Mannaerts, JP
    IEE PROCEEDINGS-CIRCUITS DEVICES AND SYSTEMS, 1998, 145 (03): : 162 - 164
  • [30] Sulfur passivation of Ga2O3(Gd2O3)/GaAs metal-oxide-semiconductor structures
    Eftekhari, G
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2000, 18 (05): : 2569 - 2572