Multi-Domain Decomposition Pseudospectral Method for Nonlinear Fokker–Planck Equations

被引:0
|
作者
Tao Sun
Tian-jun Wang
机构
[1] Shanghai Lixin University of Accounting and Finance,School of Statistics and Mathematics
[2] Henan University of Science and Technology,School of Mathematics and Statistics
关键词
Composite generalized Laguerre–Legendre pseudospectral approximation; Nonlinear Fokker–Planck equations defined on unbounded domains; Multi-domain decomposition pseudospectral method; 65M70; 41A30; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
Results on the composite generalized Laguerre–Legendre interpolation in unbounded domains are established. As an application, a composite Laguerre–Legendre pseudospectral scheme is presented for nonlinear Fokker–Planck equations on the whole line. The convergence and the stability of the proposed scheme are proved. Numerical results show the efficiency of the scheme and conform well to theoretical analysis.
引用
收藏
页码:231 / 252
页数:21
相关论文
共 50 条
  • [31] Nonlinear Fokker-Planck-Kolmogorov Equations for Measures
    Shaposhnikov, Stanislav, V
    STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS AND RELATED FIELDS: IN HONOR OF MICHAEL ROCKNER, SPDERF, 2018, 229 : 367 - 379
  • [32] The invariance principle for nonlinear Fokker-Planck equations
    Barbu, Viorel
    Rockner, Michael
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 315 : 200 - 221
  • [33] An extension of the Gegenbauer pseudospectral method for the time fractional Fokker-Planck equation
    Izadkhah, Mohammad Mahdi
    Saberi-Nadjafi, Jafar
    Toutounian, Faezeh
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (04) : 1301 - 1315
  • [34] A splitting Fourier pseudospectral method for Vlasov-Poisson-Fokker-Planck system
    Wang, Hanquan
    Cheng, Ronghua
    Wu, Xinming
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (06) : 1742 - 1758
  • [35] Generalized Hermite Spectral Method for Nonlinear Fokker-Planck Equations on the Whole Line
    Chai, Guo
    Wang, Tian-jun
    JOURNAL OF MATHEMATICAL STUDY, 2018, 51 (02): : 177 - 195
  • [36] DISCRETE-ORDINATE METHOD OF SOLUTION OF FOKKER-PLANCK EQUATIONS WITH NONLINEAR COEFFICIENTS
    BLACKMORE, R
    SHIZGAL, B
    PHYSICAL REVIEW A, 1985, 31 (03): : 1855 - 1868
  • [37] A New Numerical Method for Solving Nonlinear Fractional Fokker-Planck Differential Equations
    Guo, BeiBei
    Jiang, Wei
    Zhang, ChiPing
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2017, 12 (05):
  • [38] Fokker-Planck-Kolmogorov equations with a potential term on a domain
    O. A. Manita
    S. V. Shaposhnikov
    Doklady Mathematics, 2015, 91 : 26 - 29
  • [39] Interval Wavelet Numerical Method on Fokker-Planck Equations for Nonlinear Random System
    Liu, Li-wei
    ADVANCES IN MATHEMATICAL PHYSICS, 2013, 2013
  • [40] Fokker-Planck-Kolmogorov Equations with a Potential Term on a Domain
    Manita, O. A.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2015, 91 (01) : 26 - 29