Multiple Phase Transition in Unconventional Superconducting Films

被引:0
|
作者
N. Miyawaki
S. Higashitani
机构
[1] Hiroshima University,Graduate School of Integrated Arts and Sciences
来源
关键词
Superconducting film; Time-reversal symmetry; Andreev bound states; Odd-frequency Cooper pairs;
D O I
暂无
中图分类号
学科分类号
摘要
When Andreev bound states are formed at the surfaces of a superconducting film, there may arise, as the ground state of the film, a superconducting state with broken time-reversal symmetry (T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}$$\end{document}). In this state, Cooper pairs with a finite center-of-mass momentum q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {q}$$\end{document} are formed without external fields. We focus on the T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}$$\end{document}-breaking state in a d-wave superconducting film and investigate the effect of the Fermi surface shape on its stability region in the T–D-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D^{-1}$$\end{document} phase diagram (T: temperature, D: film thickness). The phase boundaries separating the normal state, the T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}$$\end{document}-breaking superconducting state, and the trivial (q=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {q} = 0$$\end{document}) superconducting state are determined for various Fermi surface shapes ranging from cylindrical to square. It is found that the region of the T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}$$\end{document}-breaking phase is substantially enlarged when the Fermi surface is square-shaped. This is mainly because the critical thickness Dc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_c$$\end{document} between the normal and T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}$$\end{document}-breaking states is significantly reduced when the Fermi surface has a good nesting property.
引用
收藏
页码:545 / 552
页数:7
相关论文
共 50 条
  • [31] EFFECT METAL-DIELECTRIC PHASE-TRANSITION ON SUPERCONDUCTING TRANSITION SUPERCONDUCTING TRANSITION TEMPERATURE
    KOPAEV, YV
    TIMEROV, RK
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1972, 63 (01): : 290 - +
  • [32] Switching device for the superconducting phase transition measurements of thin W films using a single superconducting quantum interference device
    Sáfrán, G
    Loidl, M
    Meier, O
    Angloher, G
    Pröbst, F
    Seidel, W
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1999, 70 (06): : 2815 - 2817
  • [33] DETERMINATION OF SUPERCONDUCTING TRANSITION REGION BY SUPERFLUID PHASE TRANSITION
    GARBUNY, M
    GOTTLIEB, M
    JOURNAL OF APPLIED PHYSICS, 1965, 36 (07) : 2167 - &
  • [34] PHASE-TRANSITION OF SUPERCONDUCTING NETWORKS
    JEANNERET, B
    LEEMANN, C
    MARTINOLI, P
    HELVETICA PHYSICA ACTA, 1987, 60 (5-6): : 831 - 831
  • [35] Dual description of the superconducting phase transition
    Kiometzis, M
    Kleinert, H
    Schakel, AMJ
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1995, 43 (08): : 697 - 732
  • [36] Phase transition and fluctuations in superconducting nanostructures
    Hayashi, Masahiko
    Ebisawa, Hiromichi
    Kato, Masaru
    LOW TEMPERATURE PHYSICS, PTS A AND B, 2006, 850 : 775 - +
  • [37] MODEL OF A SUPERCONDUCTING PHASE-TRANSITION
    CHEN, H
    BROWNSTEIN, JR
    ROWE, DJ
    PHYSICAL REVIEW C, 1990, 42 (04): : 1422 - 1431
  • [38] Superconducting phase transition and gauge dependence
    de Calan, C
    Nogueira, FS
    PHYSICAL REVIEW B, 1999, 60 (17): : 11929 - 11931
  • [39] SUPERCONDUCTING TO NORMAL PHASE TRANSITION IN TANTALUM
    ITTNER, WB
    PHYSICAL REVIEW, 1958, 111 (06): : 1483 - 1487
  • [40] Phase transition in superconducting network systems
    Hayashi, M.
    Ebisawa, H.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2006, 437-38 (93-95): : 93 - 95