Uncertainty-driven dynamics for active learning of interatomic potentials

被引:0
|
作者
Maksim Kulichenko
Kipton Barros
Nicholas Lubbers
Ying Wai Li
Richard Messerly
Sergei Tretiak
Justin S. Smith
Benjamin Nebgen
机构
[1] Los Alamos National Laboratory,Theoretical Division
[2] Los Alamos National Laboratory,Center for Nonlinear Studies
[3] Los Alamos National Laboratory,Computer, Computational, and Statistical Sciences Division
[4] Los Alamos National Laboratory,Center for Integrated Nanotechnologies
[5] Nvidia Corporation,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Machine learning (ML) models, if trained to data sets of high-fidelity quantum simulations, produce accurate and efficient interatomic potentials. Active learning (AL) is a powerful tool to iteratively generate diverse data sets. In this approach, the ML model provides an uncertainty estimate along with its prediction for each new atomic configuration. If the uncertainty estimate passes a certain threshold, then the configuration is included in the data set. Here we develop a strategy to more rapidly discover configurations that meaningfully augment the training data set. The approach, uncertainty-driven dynamics for active learning (UDD-AL), modifies the potential energy surface used in molecular dynamics simulations to favor regions of configuration space for which there is large model uncertainty. The performance of UDD-AL is demonstrated for two AL tasks: sampling the conformational space of glycine and sampling the promotion of proton transfer in acetylacetone. The method is shown to efficiently explore the chemically relevant configuration space, which may be inaccessible using regular dynamical sampling at target temperature conditions.
引用
收藏
页码:230 / 239
页数:9
相关论文
共 50 条
  • [41] Uncertainty-driven Ensemble Forecasting of QoS in Software Defined Networks
    Kolomvatsos, Kostas
    Anagnostopoulos, Christos
    Marnerides, Angelos K.
    Ni, Qiang
    Hadjiefthymiades, Stathes
    Pezaros, Dimitrios P.
    2017 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (ISCC), 2017, : 1284 - 1289
  • [42] Enough is Enough: Towards Autonomous Uncertainty-driven Stopping Criteria
    Placed, Julio A.
    Castellanos, Jose A.
    IFAC PAPERSONLINE, 2022, 55 (14): : 126 - 132
  • [43] UD-MIL: Uncertainty-Driven Deep Multiple Instance Learning for OCT Image Classification
    Wang, Xi
    Tang, Fangyao
    Chen, Hao
    Luo, Luyang
    Tang, Ziqi
    Ran, An-Ran
    Cheung, Carol Y.
    Heng, Pheng-Ann
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (12) : 3431 - 3442
  • [44] POTENTIALS OF INTERATOMIC INTERACTION IN MOLECULAR DYNAMICS
    Melker, Alexander I.
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2009, 20 (01) : 1 - 13
  • [45] Potentials of interatomic interaction in molecular dynamics
    Department of Metal Physics and Computer Technologies, St. Petersburg State Polytechnic University, Polytekhnicheskaya 29, 195251, St. Petersburg, Russia
    Rev. Adv. Mater. Sci., 2009, 1 (1-13):
  • [46] Automated calculation of thermal rate coefficients using ring polymer molecular dynamics and machine-learning interatomic potentials with active learning
    Novikov, I. S.
    Suleimanov, Y. V.
    Shapeev, A. V.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (46) : 29503 - 29512
  • [47] Dopamine encoding of novelty facilitates efficient uncertainty-driven exploration
    Wang, Yuhao
    Lak, Armin
    Manohar, Sanjay G.
    Bogacz, Rafal
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (04)
  • [48] Benchmarking of machine learning interatomic potentials for reactive hydrogen dynamics at metal surfaces
    Stark, Wojciech G.
    van der Oord, Cas
    Batatia, Ilyes
    Zhang, Yaolong
    Jiang, Bin
    Csanyi, Gabor
    Maurer, Reinhard J.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (03):
  • [49] Rostrolateral Prefrontal Cortex and Individual Differences in Uncertainty-Driven Exploration
    Badre, David
    Doll, Bradley B.
    Long, Nicole M.
    Frank, Michael J.
    NEURON, 2012, 73 (03) : 595 - 607
  • [50] Uncertainty-Driven Black-Box Test Data Generation
    Walkinshaw, Neil
    Fraser, Gordon
    2017 10TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE TESTING, VERIFICATION AND VALIDATION (ICST), 2017, : 253 - 263