Uncertainty-driven dynamics for active learning of interatomic potentials

被引:0
|
作者
Maksim Kulichenko
Kipton Barros
Nicholas Lubbers
Ying Wai Li
Richard Messerly
Sergei Tretiak
Justin S. Smith
Benjamin Nebgen
机构
[1] Los Alamos National Laboratory,Theoretical Division
[2] Los Alamos National Laboratory,Center for Nonlinear Studies
[3] Los Alamos National Laboratory,Computer, Computational, and Statistical Sciences Division
[4] Los Alamos National Laboratory,Center for Integrated Nanotechnologies
[5] Nvidia Corporation,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Machine learning (ML) models, if trained to data sets of high-fidelity quantum simulations, produce accurate and efficient interatomic potentials. Active learning (AL) is a powerful tool to iteratively generate diverse data sets. In this approach, the ML model provides an uncertainty estimate along with its prediction for each new atomic configuration. If the uncertainty estimate passes a certain threshold, then the configuration is included in the data set. Here we develop a strategy to more rapidly discover configurations that meaningfully augment the training data set. The approach, uncertainty-driven dynamics for active learning (UDD-AL), modifies the potential energy surface used in molecular dynamics simulations to favor regions of configuration space for which there is large model uncertainty. The performance of UDD-AL is demonstrated for two AL tasks: sampling the conformational space of glycine and sampling the promotion of proton transfer in acetylacetone. The method is shown to efficiently explore the chemically relevant configuration space, which may be inaccessible using regular dynamical sampling at target temperature conditions.
引用
收藏
页码:230 / 239
页数:9
相关论文
共 50 条
  • [1] Uncertainty-driven dynamics for active learning of interatomic potentials
    Kulichenko, Maksim
    Barros, Kipton
    Lubbers, Nicholas
    Li, Ying Wai
    Messerly, Richard
    Tretiak, Sergei
    Smith, Justin S.
    Nebgen, Benjamin
    NATURE COMPUTATIONAL SCIENCE, 2023, 3 (03): : 230 - +
  • [2] Uncertainty-driven active developmental learning
    Hu, Qinghua
    Ji, Luona
    Wang, Yu
    Zhao, Shuai
    Lin, Zhibin
    PATTERN RECOGNITION, 2024, 151
  • [3] Active learning for SNAP interatomic potentials via Bayesian predictive uncertainty
    Williams, Logan
    Sargsyan, Khachik
    Rohskopf, Andrew
    Najm, Habib N.
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 242
  • [4] Uncertainty-driven growth
    Oikawa, Koki
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2010, 34 (05): : 897 - 912
  • [5] Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic potentials
    Zaverkin, Viktor
    Holzmueller, David
    Christiansen, Henrik
    Errica, Federico
    Alesiani, Francesco
    Takamoto, Makoto
    Niepert, Mathias
    Kaestner, Johannes
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [6] Uncertainty-driven cooperation
    Cetemen, Doruk
    Hwang, Ilwoo
    Kaya, Ayca
    THEORETICAL ECONOMICS, 2020, 15 (03) : 1023 - 1058
  • [7] Uncertainty-driven regulation of learning and exploration in adolescents: A computational account
    Jepma, Marieke
    Schaaf, Jessica V.
    Visser, Ingmar
    Huizenga, Hilde M.
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (09)
  • [8] Active learning of linearly parametrized interatomic potentials
    Podryabinkin, Evgeny V.
    Shapeev, Alexander V.
    COMPUTATIONAL MATERIALS SCIENCE, 2017, 140 : 171 - 180
  • [9] Uncertainty-Driven Dehazing Network
    Hong, Ming
    Liu, Jianzhuang
    Li, Cuihua
    Qu, Yanyun
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 906 - 913
  • [10] Fast uncertainty estimates in deep learning interatomic potentials
    Zhu, Albert
    Batzner, Simon
    Musaelian, Albert
    Kozinsky, Boris
    JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (16):