Bacillus pumilus induced tolerance of Maize (Zea mays L.) against Cadmium (Cd) stress

被引:0
|
作者
Asim Shahzad
Mingzhou Qin
Mahmood Elahie
Muhammad Naeem
Tasmia Bashir
Humaira Yasmin
Muhammad Younas
Ahsan Areeb
Muhammad Irfan
Motsim Billah
Abdul Shakoor
Saman Zulfiqar
机构
[1] Henan University,College of Geography and Environment
[2] Mohi-Ud-Din Islamic University,Department of Botany
[3] University of Okara,Faculty of Life Sciences, Department of Biology
[4] Quaid-I-Azam University,Department of Plant Sciences
[5] COMSATS University,Department of Biosciences
[6] Mohi-Ud-Din Islamic University,Department of Biotechnology
[7] Bahauddin Zakariya University,Department of Agronomy, Faculty of Agricultural Sciences and Technology
[8] Abasyin University Islamabad,Department of Health Sciences
[9] Women University,Govt Sadiq College
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Heavy metals contaminate the soil that alters the properties of soil and negatively affect plants growth. Using microorganism and plant can remove these pollutants from soil. The present investigation was designed to evaluate the induced effect of Bacillus pumilus on maize plant in Cadmium (Cd) contaminated soil. Three different concentrations of Cd (i.e. 0.25, 0.50 and 0.75 mg kg−1) were applied in soil under which maize plants were grown. The germination percentage, shoot length, leaf length, number of leaves, root length, fresh weight and nutrient uptake by maize plant were determined. The experiment was conducted by using complete randomized design (CRD) with three replicates. The result indicated that germination percentage, Shoot length, leaf length, root length, number of leaves, and plant fresh weight were reduced by 37, 39, 39, 32 and 59% respectively at 0.75 mg kg−1 of CdSO4 concentration but when maize seeds inoculated with Bacillus pumilus significantly increased the germination percentage, shoot length, leaf length, number of leaves, plant fresh weight at different concentrations of CdSO4. Moreover, the plant protein were significantly increased by 60% in T6 (0.25 mg kg−1 of CdSO4 + inoculated seed) and Peroxidase dismutase (POD) was also significantly higher by 346% in T6 (0.25 mg kg−1 of CdSO4 + inoculated seed), however, the Superoxide dismutase (SOD) was significantly higher in T5 (0.75 mg kg−1 of CdSO4 + uninoculated seed) and was 769% higher as compared to control. The Cd contents in Bacillus pumilus inoculated maize roots and shoots were decreased. The present investigations indicated that the inoculation of maize plant with Bacillus pumilus can help maize plants to withstand Cd stress but higher concentration of Cd can harm the plant. The Bacillus pumilus has good potential to remediate Cd from soil, and also have potential to reduce the phyto availability and toxicity of Cd.
引用
收藏
相关论文
共 50 条
  • [31] Arsenate (AsV) stress response in maize (Zea mays L.)
    Ghosh, Supriya
    Shaw, Arun K.
    Azahar, Ikbal
    Adhikari, Sinchan
    Jana, Samarjit
    Roy, Sankhajit
    Kundu, Abhishek
    Sherpa, Ang R.
    Hossain, Zahed
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2016, 130 : 53 - 67
  • [32] Role of iron oxide nanoparticles in maize ( Zea mays L.) to enhance salinity stress tolerance
    Mukhtiar, Asif
    Zia, Muhammad A.
    Alawadi, Hussam F. N.
    Naqve, Maria
    Seleiman, Mahmoud F.
    Mahmood, Athar
    Majeed, Muhammad I.
    Hafeez, Muhammad B.
    Khan, Bilal A.
    Khan, Naeem
    NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2024, 52 (03)
  • [33] Water logging tolerance in inbred lines of maize (Zea mays L.)
    Tripathi, S
    Warsi, MZK
    Verma, SS
    CEREAL RESEARCH COMMUNICATIONS, 2003, 31 (1-2) : 221 - 226
  • [34] Water Logging Tolerance in Inbred Lines of Maize (Zea mays L.)
    Shailesh Tripathi
    M. Z. K. Warsi
    S. S. Verma
    Cereal Research Communications, 2003, 31 : 221 - 226
  • [35] The Paleobiolinguistics of Maize (Zea mays L.)
    Brown, Cecil H.
    Clement, Charles R.
    Epps, Patience
    Luedeling, Eike
    Wichmann, Soren
    ETHNOBIOLOGY LETTERS, 2014, 5 : 52 - 64
  • [36] Expression profiling of stress protectants in Zea mays L. plants treated with Bacillus pumilus: surfactant-producing bioeffector
    S. Habib
    A. Ahmed
    International Journal of Environmental Science and Technology, 2023, 20 : 4435 - 4446
  • [37] Expression profiling of stress protectants in Zea mays L. plants treated with Bacillus pumilus: surfactant-producing bioeffector
    Habib, S.
    Ahmed, A.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2023, 20 (04) : 4435 - 4446
  • [38] Induced cytomictic diversity in maize (Zea mays L.) inbred
    Prashant Kumar Rai
    Girjesh Kumar
    Avinash Tripathi
    Cytology and Genetics, 2010, 44 : 334 - 338
  • [39] Induced Cytomictic Diversity in Maize (Zea mays L.) Inbred
    Rai, Prashant Kumar
    Kumar, Girjesh
    Tripathi, Avinash
    CYTOLOGY AND GENETICS, 2010, 44 (06) : 334 - 338
  • [40] Silicon and cadmium interaction of maize (Zea mays L.) plants cultivated in vitro
    Lukacova, Zuzana
    Liska, Denis
    Bokor, Boris
    Svubova, Renata
    Lux, Alexander
    BIOLOGIA, 2021, 76 (09) : 2721 - 2733