By utilizing the Poincaré inequality and representation formulae, it is shown that on the Heisenberg type group, ℍ(2n, m), there exists a constant C > 0 such that
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ |\nabla e^{t \Delta} f|(g) \leq C e^{t \Delta}(|\nabla f|)(g), \quad \forall g \in \mathbb{H}(2n, m), t > 0, f \in C_o^{\infty}(\mathbb{H}(2n, m)). $$\end{document}