Gradient Estimates for the Heat Semigroup on H-Type Groups

被引:0
|
作者
Jun-Qi Hu
Hong-Quan LI
机构
[1] Shanghai University of Finance and Economics,Department of Applied Mathematics
[2] Fudan University,School of Mathematics Science
来源
Potential Analysis | 2010年 / 33卷
关键词
Gradient estimates; Heat semigroup; Heisenberg type groups; 58J35 (35B45);
D O I
暂无
中图分类号
学科分类号
摘要
By utilizing the Poincaré inequality and representation formulae, it is shown that on the Heisenberg type group, ℍ(2n, m), there exists a constant C > 0 such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ |\nabla e^{t \Delta} f|(g) \leq C e^{t \Delta}(|\nabla f|)(g), \quad \forall g \in \mathbb{H}(2n, m), t > 0, f \in C_o^{\infty}(\mathbb{H}(2n, m)). $$\end{document}
引用
收藏
页码:355 / 386
页数:31
相关论文
共 50 条