Transition toward thorium fuel cycle in a molten salt reactor by using plutonium

被引:0
|
作者
De-Yang Cui
Shao-Peng Xia
Xiao-Xiao Li
Xiang-Zhou Cai
Jin-Gen Chen
机构
[1] Chinese Academy of Sciences,Shanghai Institute of Applied Physics
[2] Chinese Academy of Sciences,CAS Innovative Academies in TMSR Energy System
[3] University of Chinese Academy of Sciences,undefined
来源
关键词
Molten salt reactor; Thorium fuel cycle; Plutonium; Reprocessing;
D O I
暂无
中图分类号
学科分类号
摘要
The molten salt reactor (MSR), as one of the Generation IV advanced nuclear systems, has attracted a worldwide interest due to its excellent performances in safety, economics, sustainability, and proliferation resistance. The aim of this work is to provide and evaluate possible solutions to fissile 233U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{233} \hbox {U}$$\end{document} production and further the fuel transition to thorium fuel cycle in a thermal MSR by using plutonium partitioned from light water reactors spent fuel. By using an in-house developed tool, a breeding and burning (B&B) scenario is first introduced and analyzed from the aspects of the evolution of main nuclides, net 233U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{233} \hbox {U}$$\end{document} production, spectrum shift, and temperature feedback coefficient. It can be concluded that such a Th/Pu to Th/233U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Th}/^{233} \hbox {U}$$\end{document} transition can be accomplished by employing a relatively fast fuel reprocessing with a cycle time less than 60 days. At the equilibrium state, the reactor can achieve a conversion ratio of about 0.996 for the 60-day reprocessing period (RP) case and about 1.047 for the 10-day RP case. The results also show that it is difficult to accomplish such a fuel transition with limited reprocessing (RP is 180 days), and the reactor operates as a converter and burns the plutonium with the help of thorium. Meanwhile, a pre-breeding and burning (PB&B) scenario is also analyzed briefly with respect to the net 233U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{233} \hbox {U}$$\end{document} production and evolution of main nuclides. One can find that it is more efficient to produce 233U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{233} \hbox {U}$$\end{document} under this scenario, resulting in a double time varying from about 1.96 years for the 10-day RP case to about 6.15 years for the 180-day RP case.
引用
下载
收藏
相关论文
共 50 条
  • [21] Preliminary analysis of fuel cycle performance for a small modular heavy water-moderated thorium molten salt reactor
    Ya-Peng Zhang
    Yu-Wen Ma
    Jian-Hui Wu
    Jin-Gen Chen
    Xiang-Zhou Cai
    Nuclear Science and Techniques, 2020, 31
  • [22] Preliminary analysis of fuel cycle performance for a small modular heavy water-moderated thorium molten salt reactor
    Ya-Peng Zhang
    Yu-Wen Ma
    Jian-Hui Wu
    Jin-Gen Chen
    Xiang-Zhou Cai
    Nuclear Science and Techniques, 2020, 31 (11) : 25 - 37
  • [23] Ex-core transition to thorium cycle in a small modular heavy-water moderated molten salt reactor with unchanged concentration of heavy metal nuclides in the fuel salt
    Zhang, Yapeng
    Wu, Jianhui
    Chen, Jingen
    Cai, Xiangzhou
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (08) : 12383 - 12395
  • [24] FAST MOLTEN CHLORIDE REACTOR ON THORIUM CYCLE
    OTTEWITTE, EH
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1978, 28 (JUN): : 725 - 726
  • [25] Transient analysis of tritium transport characteristics of thorium molten salt reactor with solid fuel
    Wang, Chenglong
    Qin, Hao
    Tian, Wenxi
    Qiu, Suizheng
    Su, G. H.
    ANNALS OF NUCLEAR ENERGY, 2020, 141
  • [26] Influence of the processing and salt composition on the thorium molten salt reactor
    Merle-Lucotte, Elsa
    Mathieu, Ludovic
    Heuer, Daniel
    Ghetta, Veronique
    Brissot, Roger
    Le Brun, Christian
    Liatard, Eric
    NUCLEAR TECHNOLOGY, 2008, 163 (03) : 358 - 365
  • [27] Molten salt fast reactor with U-Pu fuel cycle
    Degtyarev, Alexej
    Myasnikov, Andrej
    Ponomarev, Leonid
    PROGRESS IN NUCLEAR ENERGY, 2015, 82 : 33 - 36
  • [28] Molten salt reactor neutronics and fuel cycle modeling and simulation with SCALE
    Betzler, Benjamin R.
    Powers, Jeffrey J.
    Worrall, Andrew
    ANNALS OF NUCLEAR ENERGY, 2017, 101 : 489 - 503
  • [29] Fuel Salt for the Molten-Salt Reactor
    L. I. Ponomarev
    M. B. Seregin
    A. P. Parshin
    S. A. Mel’nikov
    A. A. Mikhalichenko
    L. P. Zagorets
    R. N. Manuilov
    A. A. Rzheutskii
    Atomic Energy, 2013, 115 : 5 - 10
  • [30] Fuel Salt for the Molten-Salt Reactor
    Ponomarev, L. I.
    Seregin, M. B.
    Parshin, A. P.
    Mel'nikov, S. A.
    Mikhalichenko, A. A.
    Zagorets, L. P.
    Manuilov, R. N.
    Rzheutskii, A. A.
    ATOMIC ENERGY, 2013, 115 (01) : 5 - 10