Error analysis of nonconforming and mixed FEMs for second-order linear non-selfadjoint and indefinite elliptic problems

被引:0
|
作者
Carsten Carstensen
Asha K. Dond
Neela Nataraj
Amiya K. Pani
机构
[1] Humboldt-Universität zu Berlin,Department of Mathematics
[2] Indian Institute of Technology Bombay,Distinguished Visiting Professor, Department of Mathematics
[3] Indian Institute of Technology Bombay,Department of Mathematics
来源
Numerische Mathematik | 2016年 / 133卷
关键词
65N30; 65N50;
D O I
暂无
中图分类号
学科分类号
摘要
The state-of-the art proof of a global inf-sup condition on mixed finite element schemes does not allow for an analysis of truly indefinite, second-order linear elliptic PDEs. This paper, therefore, first analyses a nonconforming finite element discretization which converges owing to some a prioriL2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} error estimates even for reduced regularity on non-convex polygonal domains. An equivalence result of that nonconforming finite element scheme to the mixed finite element method (MFEM) leads to the well-posedness of the discrete solution and to a priori error estimates for the MFEM. The explicit residual-based a posteriori error analysis allows some reliable and efficient error control and motivates some adaptive discretization which improves the empirical convergence rates in three computational benchmarks.
引用
收藏
页码:557 / 597
页数:40
相关论文
共 50 条