Robust min-max regret covering problems

被引:0
|
作者
Amadeu A. Coco
Andréa Cynthia Santos
Thiago F. Noronha
机构
[1] Normandie Université,UNIHAVRE, UNIROUEN, INSA Rouen, LITIS
[2] Federal University of Minas Gerais,Computer Science Department
关键词
Robust optimization; Covering problems; Heuristics; Exact methods; Uncertainties;
D O I
暂无
中图分类号
学科分类号
摘要
This article deals with two min-max regret covering problems: the min-max regret Weighted Set Covering Problem (min-max regret WSCP) and the min-max regret Maximum Benefit Set Covering Problem (min-max regret MSCP). These problems are the robust optimization counterparts, respectively, of the Weighted Set Covering Problem and of the Maximum Benefit Set Covering Problem. In both problems, uncertainty in data is modeled by using an interval of continuous values, representing all the infinite values every uncertain parameter can assume. This study has the following major contributions: (i) a proof that MSCP is Σp2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma _p^2$$\end{document}-Hard, (ii) a mathematical formulation for the min-max regret MSCP, (iii) exact and (iv) heuristic algorithms for the min-max regret WSCP and the min-max regret MSCP. We reproduce the main exact algorithms for the min-max regret WSCP found in the literature: a Logic-based Benders decomposition, an extended Benders decomposition and a branch-and-cut. In addition, such algorithms have been adapted for the min-max regret MSCP. Moreover, five heuristics are applied for both problems: two scenario-based heuristics, a path relinking, a pilot method and a linear programming-based heuristic. The goal is to analyze the impact of such methods on handling robust covering problems in terms of solution quality and performance.
引用
收藏
页码:111 / 141
页数:30
相关论文
共 50 条
  • [41] MAX-MIN AND MIN-MAX APPROXIMATION PROBLEMS FOR NORMAL MATRICES REVISITED
    Liesen, Joerg
    Tichy, Petr
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2014, 41 : 159 - 166
  • [42] Robust aircraft sequencing and scheduling problem with arrival/departure delay using the min-max regret approach
    Ng, K. K. H.
    Lee, C. K. M.
    Chan, Felix T. S.
    Qin, Yichen
    [J]. TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW, 2017, 106 : 115 - 136
  • [43] Robust (min-max regret) single machine scheduling with interval processing times and total tardiness criterion
    Wang, Shijin
    Cui, Wenli
    Chu, Feng
    Yu, Jianbo
    Gupta, Jatinder N. D.
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2020, 149
  • [44] Robust min-max regret scheduling to minimize the weighted number of late jobs with interval processing times
    Drwal, Maciej
    Jozefczyk, Jerzy
    [J]. ANNALS OF OPERATIONS RESEARCH, 2020, 284 (01) : 263 - 282
  • [45] Min-Max Problems on Factor-Graphs
    Ravanbakhsh, Siamak
    Srinivasa, Christopher
    Frey, Brendan
    Greiner, Russell
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 1035 - 1043
  • [46] A SUPERLINEARLY CONVERGENT ALGORITHM FOR MIN-MAX PROBLEMS
    POLAK, E
    MAYNE, DQ
    HIGGINS, JE
    [J]. PROCEEDINGS OF THE 28TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-3, 1989, : 894 - 898
  • [47] Online learning for min-max discrete problems
    Bampis, Evripidis
    Christou, Dimitris
    Escoffier, Bruno
    NGuyen, Kim Thang
    [J]. THEORETICAL COMPUTER SCIENCE, 2022, 930 : 209 - 217
  • [48] Semidefinite programming for min-max problems and games
    Laraki, R.
    Lasserre, J. B.
    [J]. MATHEMATICAL PROGRAMMING, 2012, 131 (1-2) : 305 - 332
  • [49] SUPERLINEARLY CONVERGENT ALGORITHM FOR MIN-MAX PROBLEMS
    POLAK, E
    MAYNE, DQ
    HIGGINS, JE
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1991, 69 (03) : 407 - 439
  • [50] Min-Max Spaces and Complexity Reduction in Min-Max Expansions
    Gaubert, Stephane
    McEneaney, William M.
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2012, 65 (03): : 315 - 348