Robust min-max regret covering problems

被引:0
|
作者
Amadeu A. Coco
Andréa Cynthia Santos
Thiago F. Noronha
机构
[1] Normandie Université,UNIHAVRE, UNIROUEN, INSA Rouen, LITIS
[2] Federal University of Minas Gerais,Computer Science Department
关键词
Robust optimization; Covering problems; Heuristics; Exact methods; Uncertainties;
D O I
暂无
中图分类号
学科分类号
摘要
This article deals with two min-max regret covering problems: the min-max regret Weighted Set Covering Problem (min-max regret WSCP) and the min-max regret Maximum Benefit Set Covering Problem (min-max regret MSCP). These problems are the robust optimization counterparts, respectively, of the Weighted Set Covering Problem and of the Maximum Benefit Set Covering Problem. In both problems, uncertainty in data is modeled by using an interval of continuous values, representing all the infinite values every uncertain parameter can assume. This study has the following major contributions: (i) a proof that MSCP is Σp2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma _p^2$$\end{document}-Hard, (ii) a mathematical formulation for the min-max regret MSCP, (iii) exact and (iv) heuristic algorithms for the min-max regret WSCP and the min-max regret MSCP. We reproduce the main exact algorithms for the min-max regret WSCP found in the literature: a Logic-based Benders decomposition, an extended Benders decomposition and a branch-and-cut. In addition, such algorithms have been adapted for the min-max regret MSCP. Moreover, five heuristics are applied for both problems: two scenario-based heuristics, a path relinking, a pilot method and a linear programming-based heuristic. The goal is to analyze the impact of such methods on handling robust covering problems in terms of solution quality and performance.
引用
收藏
页码:111 / 141
页数:30
相关论文
共 50 条
  • [1] Robust min-max regret covering problems
    Coco, Amadeu A.
    Santos, Andrea Cynthia
    Noronha, Thiago F.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 83 (01) : 111 - 141
  • [2] Complexity of the min-max and min-max regret assignment problems
    Aissi, H
    Bazgan, C
    Vanderpooten, D
    [J]. OPERATIONS RESEARCH LETTERS, 2005, 33 (06) : 634 - 640
  • [3] Min-max and min-max regret versions of combinatorial optimization problems: A survey
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 197 (02) : 427 - 438
  • [4] Pseudo-polynomial algorithms for min-max and min-max regret problems
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    [J]. Operations Research and Its Applications, 2005, 5 : 171 - 178
  • [5] Approximation and resolution of min-max and min-max regret versions of combinatorial optimization problems
    Aissi H.
    [J]. 4OR, 2006, 4 (4) : 347 - 350
  • [6] Approximation of min-max and min-max regret versions of some combinatorial optimization problems
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 179 (02) : 281 - 290
  • [7] Complexity of the min-max (regret) versions of min cut problems
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    [J]. DISCRETE OPTIMIZATION, 2008, 5 (01) : 66 - 73
  • [8] Scenario relaxation algorithm for finite scenario-based min-max regret and min-max relative regret robust optimization
    Assavapokee, Tiravat
    Realff, Matthew J.
    Ammons, Jane C.
    Hong, I-Hsuan
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2008, 35 (06) : 2093 - 2102
  • [9] Complexity of the min-max (regret) versions of cut problems
    Aissi, H
    Bazgan, C
    Vanderpooten, D
    [J]. ALGORITHMS AND COMPUTATION, 2005, 3827 : 789 - 798
  • [10] Approximating min-max (regret) versions of some polynomial problems
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    [J]. COMPUTING AND COMBINATORICS, PROCEEDINGS, 2006, 4112 : 428 - 438