Atomic force microscopy-based mechanobiology

被引:3
|
作者
Michael Krieg
Gotthold Fläschner
David Alsteens
Benjamin M. Gaub
Wouter H. Roos
Gijs J. L. Wuite
Hermann E. Gaub
Christoph Gerber
Yves F. Dufrêne
Daniel J. Müller
机构
[1] Neurophotonics and Mechanical Systems Biology,Louvain Institute of Biomolecular Science and Technology
[2] Institute of Photonic Sciences (ICFO),Department of Physics and Astronomy
[3] Department of Biosystems Science and Engineering,Swiss Nanoscience Institute (SNI), Institute of Physics
[4] Eidgenössische Technische Hochschule (ETH) Zürich,undefined
[5] Université catholique de Louvain,undefined
[6] Moleculaire Biofysica,undefined
[7] Zernike Instituut,undefined
[8] Rijksuniversiteit Groningen,undefined
[9] Vrije Universiteit Amsterdam,undefined
[10] Applied Physics,undefined
[11] Ludwig-Maximilians Universität (LMU) Munich,undefined
[12] University of Basel,undefined
来源
Nature Reviews Physics | 2019年 / 1卷
关键词
Biological Sensor Systems; Mechanical Cues; Actomyosin Cortex; Atomic Force Microscopy Probe; Cortical Shell-liquid Core (CSLC);
D O I
暂无
中图分类号
学科分类号
摘要
Mechanobiology emerges at the crossroads of medicine, biology, biophysics and engineering and describes how the responses of proteins, cells, tissues and organs to mechanical cues contribute to development, differentiation, physiology and disease. The grand challenge in mechanobiology is to quantify how biological systems sense, transduce, respond and apply mechanical signals. Over the past three decades, atomic force microscopy (AFM) has emerged as a key platform enabling the simultaneous morphological and mechanical characterization of living biological systems. In this Review, we survey the basic principles, advantages and limitations of the most common AFM modalities used to map the dynamic mechanical properties of complex biological samples to their morphology. We discuss how mechanical properties can be directly linked to function, which has remained a poorly addressed issue. We outline the potential of combining AFM with complementary techniques, including optical microscopy and spectroscopy of mechanosensitive fluorescent constructs, super-resolution microscopy, the patch clamp technique and the use of microstructured and fluidic devices to characterize the 3D distribution of mechanical responses within biological systems and to track their morphology and functional state.
引用
收藏
页码:41 / 57
页数:16
相关论文
共 50 条
  • [31] Atomic Force Microscopy-Based Repeatable Surface Nanomachining for Nanochannels on Bare Silicon Substrates
    Dong, Zhuxin
    Wejinya, Uchechukwu C.
    [J]. 2012 12TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2012,
  • [32] Quantitative nanohistological investigation of scleroderma: an atomic force microscopy-based approach to disease characterization
    Strange, Adam P.
    Aguayo, Sebastian
    Ahmed, Tarek
    Mordan, Nicola
    Stratton, Richard
    Porter, Stephen R.
    Parekh, Susan
    Bozec, Laurent
    [J]. INTERNATIONAL JOURNAL OF NANOMEDICINE, 2017, 12 : 411 - 420
  • [33] Tip Recycling for Atomic Force Microscopy-Based Tip-Enhanced Raman Spectroscopy
    Bartolomeo, Giovanni Luca
    Goubert, Guillaume
    Zenobi, Renato
    [J]. APPLIED SPECTROSCOPY, 2020, 74 (11) : 1358 - 1364
  • [34] Mapping of Proteomic Composition on the Surfaces of Bacillus Spores by Atomic Force Microscopy-Based Immunolabeling
    Plomp, Marco
    Malkin, Alexander J.
    [J]. LANGMUIR, 2009, 25 (01) : 403 - 409
  • [35] Atomic force microscopy-based single-molecule force spectroscopy detects DNA base mismatches
    Liu, Wenjing
    Guo, Yourong
    Wang, Kaizhe
    Zhou, Xingfei
    Wang, Ying
    Lu, Junhong
    Shao, Zhifeng
    Hu, Jun
    Czajkowsky, Daniel M.
    Li, Bin
    [J]. NANOSCALE, 2019, 11 (37) : 17206 - 17210
  • [36] The Influence of Physical and Physiological Cues on Atomic Force Microscopy-Based Cell Stiffness Assessment
    Chiou, Yu-Wei
    Lin, Hsiu-Kuan
    Tang, Ming-Jer
    Lin, Hsi-Hui
    Yeh, Ming-Long
    [J]. PLOS ONE, 2013, 8 (10):
  • [37] Cell mechanics using atomic force microscopy-based single-cell compression
    Lulevich, Valentin
    Zink, Tiffany
    Chen, Huan-Yuan
    Liu, Fu-Tong
    Liu, Gang-yu
    [J]. LANGMUIR, 2006, 22 (19) : 8151 - 8155
  • [38] Toward the nanoscale study of insect physiology using an atomic force microscopy-based nanostethoscope
    I. Sokolov
    [J]. MRS Bulletin, 2012, 37 : 522 - 527
  • [39] Investigation of the nanoscale elastic recovery of a polymer using an atomic force microscopy-based method
    Geng, Yanquan
    Yan, Yongda
    Hu, Zhenjiang
    Zhao, Xuesen
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2016, 27 (01)
  • [40] Atomic force microscopy-based repeated machining theory for nanochannels on silicon oxide surfaces
    Wang, Z. Q.
    Jiao, N. D.
    Tung, S.
    Dong, Z. L.
    [J]. APPLIED SURFACE SCIENCE, 2011, 257 (08) : 3627 - 3631