Critical Dimensions for the Existence of Self-Intersection Local Times of the N-Parameter Brownian Motion in Rd

被引:0
|
作者
Peter Imkeller
Ferenc Weisz
机构
[1] Humboldt Universität zu Berlin,Institut für Stochastik
[2] Eötvös L. University,Department of Numerical Analysis
来源
关键词
-parameter Brownian motion; self-intersection local time; multiple stochastic integrals; canonical Dirichlet structure;
D O I
暂无
中图分类号
学科分类号
摘要
Fix two rectangles A, B in [0, 1]N. Then the size of the random set of double points of the N-parameter Brownian motion \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(W_t )_{t \in } [0,1]^N $$ \end{document} in Rd, i.e, the set of pairs (s, t), where s∈A, t∈B, and Ws=Wt, can be measured as usual by a self-intersection local time. If A=B, we show that the critical dimension below which self-intersection local time does not explode, is given by d=2N. If A ∩ B is a p-dimensional rectangle, it is 4N–2p (0≤p≤N). If A ∩ B = ∅, it is infinite. In all cases, we derive the rate of explosion of canonical approximations of self-intersection local time for dimensions above the critical one, and determine its smoothness in terms of the canonical Dirichlet structure on Wiener space.
引用
收藏
页码:721 / 737
页数:16
相关论文
共 50 条