Inverse boundary spectral problem for Riemannian polyhedra

被引:0
|
作者
Anna Kirpichnikova
Yaroslav Kurylev
机构
[1] University of Glasgow,School of Mathematics and Statistics
[2] University College London,Department of Mathematics
来源
Mathematische Annalen | 2012年 / 354卷
关键词
Inverse Problem; Gaussian Beam; Simplicial Complex; Transmission Condition; Jump Discontinuity;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a Riemannian polyhedron of a special type with a piecewise smooth boundary. The associated Neumann Laplacian defines the boundary spectral data as the set of eigenvalues and restrictions to the boundary of the corresponding eigenfunctions. In this paper we prove that the boundary spectral data prescribed on an open subset of the polyhedron boundary determine this polyhedron uniquely, i.e. up to an isometry.
引用
收藏
页码:1003 / 1028
页数:25
相关论文
共 50 条