Electrospun poly(ɛ-caprolactone)/nanoclay nanofibrous mats for tissue engineering

被引:0
|
作者
Mahdi Nouri
Javad Mokhtari
Mahsa Rostamloo
机构
[1] University of Guilan,Department of Textile Engineering
来源
Fibers and Polymers | 2013年 / 14卷
关键词
Poly (; -caprolactone); Nanoclay; Biodegradable; Electrospinning; Nanofiber; Tissue engineering;
D O I
暂无
中图分类号
学科分类号
摘要
Nanofibrous mats of poly (ɛ-caprolactone)/nanoclay nanocomposites were fabricated using electrospinning method. Effects of nanoclay content of the nanocomposite on final nanofiber structures were investigated and characterized by scanning electron microscope (SEM) and differential scanning calorimetry (DSC) analysis. The results showed that the presence of the nanoclay promoted the creation of fibrous structure in comparison with solely poly (ɛ-caprolactone). Furthermore, increase in nanoclay content led to the formation of more uniform nanofiber structures and caused a decrease in the mean nanofiber diameter. DSC results showed that the addition of nanoclay reduced the crystallinity of the nanocomposite in compared with pristine PCL. Studies of the mechanical properties, wettability and degradability showed that the presence of nanoclay improved tensile modulus, tensile strength, wettability and biodegradability of the nanocomposites. To evaluate the effect of nanoclay on the cell adhesion and bioactivity of the poly (ɛ-caprolactone)/nanoclay nanocomposites, fibroblasts cells were seeded on the mats. The results showed that the prepared nanocomposite could be a potential candidate for tissue engineering.
引用
收藏
页码:957 / 964
页数:7
相关论文
共 50 条
  • [21] Electrospun nanofibers composed of poly(ε-caprolactone) and polyethylenimine for tissue engineering applications
    Kim, Jang Ho
    Choung, Pill-Hoon
    Kim, In Yong
    Lim, Ki Taek
    Son, Hyun Mok
    Choung, Yun-Hoon
    Cho, Chong-Su
    Chung, Jong Hoon
    MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2009, 29 (05): : 1725 - 1731
  • [22] The electrospun poly(ε-caprolactone)/fluoridated hydroxyapatite nanocomposite for bone tissue engineering
    Johari, Narges
    Fathi, Mohammadhossein
    Fereshteh, Zeinab
    Kargozar, Saeid
    Samadikuchaksaraei, Ali
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2020, 31 (05) : 1019 - 1026
  • [23] Green Poly(ε-caprolactone) Composites Reinforced with Electrospun Polylactide/Poly(ε-caprolactone) Blend Fiber Mats
    Chen, Jianxiang
    Lu, Liangliang
    Wu, Defeng
    Yuan, Lijuan
    Zhang, Ming
    Hua, Jingjing
    Xu, Jia
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2014, 2 (09): : 2102 - 2110
  • [24] Fabrication of chitosan/poly(caprolactone) nanofibrous scaffold for bone and skin tissue engineering
    Shalumon, K. T.
    Anulekha, K. H.
    Chennazhi, K. P.
    Tamura, H.
    Nair, S. V.
    Jayakumar, R.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2011, 48 (04) : 571 - 576
  • [25] Fabrication and characterization of poly(ε-caprolactone)/gelatin nanofibrous scaffolds for retinal tissue engineering
    Rahmani, Shiva
    Tabandeh, Fatemeh
    Faghihi, Shahab
    Amoabediny, Ghassem
    Shakibaie, Mehdi
    Noorani, Behnam
    Yazdian, Fatemeh
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2018, 67 (01) : 27 - 35
  • [26] Antibacterial electrospun poly(ε-caprolactone)/ascorbyl palmitate nanofibrous materials
    Paneva, Dilyana
    Manolova, Nevena
    Argirova, Mariana
    Rashkov, Iliya
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2011, 416 (01) : 346 - 355
  • [27] Electrospun essential oil-doped chitosan/poly(ε-caprolactone) hybrid nanofibrous mats for antimicrobial food biopackaging exploits
    Ardekani-Zadeh, Ali Hasanpour
    Hosseini, Seyed Fakhreddin
    CARBOHYDRATE POLYMERS, 2019, 223
  • [28] Poly(Vinyl Alcohol)-Based Nanofibrous Electrospun Scaffolds for Tissue Engineering Applications
    Teixeira, Marta A.
    Amorim, M. Teresa P.
    Felgueiras, Helena P.
    POLYMERS, 2020, 12 (01)
  • [29] In vitro mineralization of hydroxyapatite on electrospun poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) fibrous scaffolds for tissue engineering application
    Fu, ShaoZhi
    Yang, LingLin
    Fan, Juan
    Wen, QingLian
    Lin, Sheng
    Wang, BiQiong
    Chen, LanLan
    Meng, XiaoHang
    Chen, Yue
    Wu, JingBo
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2013, 107 : 167 - 173
  • [30] Tissue Engineering Nanoclay Composite Scaffolds Composed of Poly-glycerol Sebacate and Poly-caprolactone
    Chappidi, Deepthi Y.
    Mills, David K.
    2016 32ND SOUTHERN BIOMEDICAL ENGINEERING CONFERENCE (SBEC), 2016, : 75 - 75