Realization of the mapping class group by homeomorphisms

被引:0
|
作者
Vladimir Markovic
机构
[1] University of Warwick,Institute of Mathematics
来源
Inventiones mathematicae | 2007年 / 168卷
关键词
Riemann Surface; Homotopy Class; Homotopy Type; Mapping Class Group; Simple Closed Curve;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we show that the mapping class group of a closed surface can not be geometrically realized as a group of homeomorphisms of that surface. More precisely, let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Pr:\mathcal{H}\textit{omeo}(M)\to\mathcal{M}\mathcal{C}(M)$\end{document} denote the standard projection of the group of homeomorphisms to the mapping class group of a closed surface M of genus g>5. We show that there is no homomorphism \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{E}:\mathcal{M}\mathcal{C}(M)\to\mathcal{H}\textit{omeo}(M)$\end{document}, such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Pr\circ\mathcal{E}$\end{document} is the identity. This answers a question by Thurston (see [11]).
引用
收藏
页码:523 / 566
页数:43
相关论文
共 50 条
  • [21] An acylindricity theorem for the mapping class group
    Shackleton, Kenneth J.
    NEW YORK JOURNAL OF MATHEMATICS, 2010, 16 : 563 - 573
  • [22] Congruence topologies on the mapping class group
    Boggi, Marco
    JOURNAL OF ALGEBRA, 2020, 546 : 518 - 552
  • [23] Arithmetic quotients of the mapping class group
    Grunewald, Fritz
    Larsen, Michael
    Lubotzky, Alexander
    Malestein, Justin
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2015, 25 (05) : 1493 - 1542
  • [24] Bordism invariants of the mapping class group
    Heap, Aaron
    TOPOLOGY, 2006, 45 (05) : 851 - 886
  • [25] A New Boundary of the Mapping Class Group
    Li Xin Liu
    Yao Zhong Shi
    Acta Mathematica Sinica, English Series, 2023, 39 : 885 - 903
  • [26] A New Boundary of the Mapping Class Group
    Liu, Li Xin
    Shi, Yao Zhong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (05) : 885 - 903
  • [27] A New Boundary of the Mapping Class Group
    Li Xin LIU
    Yao Zhong SHI
    ActaMathematicaSinica,EnglishSeries, 2023, (05) : 885 - 903
  • [28] Artin relations in the mapping class group
    Jamil Mortada
    Geometriae Dedicata, 2012, 158 : 283 - 300
  • [29] ERGODIC ACTIONS OF THE MAPPING CLASS GROUP
    MASUR, H
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 94 (03) : 455 - 459
  • [30] Handlebody subgroups in a mapping class group
    Bestvina, Mladen
    Fujiwara, Koji
    IN THE TRADITION OF AHLFORS-BERS, VII, 2017, 696 : 29 - 50