Realization of the mapping class group by homeomorphisms

被引:0
|
作者
Vladimir Markovic
机构
[1] University of Warwick,Institute of Mathematics
来源
Inventiones mathematicae | 2007年 / 168卷
关键词
Riemann Surface; Homotopy Class; Homotopy Type; Mapping Class Group; Simple Closed Curve;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we show that the mapping class group of a closed surface can not be geometrically realized as a group of homeomorphisms of that surface. More precisely, let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Pr:\mathcal{H}\textit{omeo}(M)\to\mathcal{M}\mathcal{C}(M)$\end{document} denote the standard projection of the group of homeomorphisms to the mapping class group of a closed surface M of genus g>5. We show that there is no homomorphism \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{E}:\mathcal{M}\mathcal{C}(M)\to\mathcal{H}\textit{omeo}(M)$\end{document}, such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Pr\circ\mathcal{E}$\end{document} is the identity. This answers a question by Thurston (see [11]).
引用
收藏
页码:523 / 566
页数:43
相关论文
共 50 条