The paper contains three main results. First, we show that if a commutative semigroup variety is a modular element of the lattice Com of all commutative semigroup varieties then it is either the variety \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{COM}$\end{document} of all commutative semigroups or a nilvariety or the join of a nilvariety with the variety of semilattices. Second, we prove that if a commutative nilvariety is a modular element of Com then it may be given within \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{COM}$\end{document} by 0-reduced and substitutive identities only. Third, we completely classify all lower-modular elements of Com. As a corollary, we prove that an element of Com is modular whenever it is lower-modular. All these results are precise analogues of results concerning modular and lower-modular elements of the lattice of all semigroup varieties obtained earlier by Ježek, McKenzie, Vernikov, and the author. As an application of a technique developed in this paper, we provide new proofs of the ‘prototypes’ of the first and the third our results.