Non-monotone submodular function maximization under k-system constraint

被引:0
|
作者
Majun Shi
Zishen Yang
Donghyun Kim
Wei Wang
机构
[1] Xi’an Jiaotong University,School of Mathematics and Statistics
[2] Georgia State University,Department of Computer Science
来源
Journal of Combinatorial Optimization | 2021年 / 41卷
关键词
Submodular maximization; -system; Modified-Greedy algorithm; NMSFMk algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
The problems of maximizing constrained monotone submodular functions have many practical applications, most recently in the context of combinatorial optimization, operations research, economics and especially machine learning, with constant approximation algorithms known under a variety of constraints. Unfortunately, non-monotone submodular functions maximization is less well studied; the first approximation algorithm for the non-monotone case was studied by Feige et al. (Proceedings of the 48th IEEE symposium on foundations of computer science (FOCS’07), 2007) about unconstrained non-monotone submodular maximization in 2007. In this paper, we extend the work of Lee et al. (Proceedings of the 41st ACM-SIAM symposium on theory of computing (STOC’09), pp 323–332, 2009) for maximizing a non-monotone submodular function under k-matroid constraint to k-system constraint. We first propose a Modified-Greedy algorithm that works no worse than that of Gupta et al. (Proceedings of the 6th international workshop on internet and network economics (WINE’10), vol 6484, pp 246–257, 2010). Based on this, then we provide the NMSFMk algorithm for maximizing a non-monotone submodular function subject to k-system constraint (which generalizes the k-matroid constraint), using Modified-Greedy algorithm combined with USFM algorithm (USFM algorithm is the random linear time 1/2-approximation algorithm proposed by Buchbinder et al. (Proceedings of the 53rd IEEE symposium on foundations of computer science (FOCS’12), pp 649–658, 2012) for unconstrained non-monotone submodular function maximization problem.) iteratively. Finally, we show that NMSFMk algorithm achieves a 12k+3+1/k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2k+3+1/k}$$\end{document}-approximation ratio with running time of O(nmk) (where m is the size of largest set returned by the NMSFMk algorithm), which beats the existing algorithms in many aspects.
引用
收藏
页码:128 / 142
页数:14
相关论文
共 50 条
  • [11] Fast Adaptive Non-Monotone Submodular Maximization Subject to a Knapsack Constraint
    Amanatidis G.
    Fusco F.
    Lazos P.
    Leonardi S.
    Reiffenhäuser R.
    Journal of Artificial Intelligence Research, 2022, 74 : 661 - 690
  • [12] Practical and Parallelizable Algorithms for Non-Monotone Submodular Maximization with Size Constraint
    Chen, Yixin
    Kuhnle, Alan
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2022, 79 : 599 - 637
  • [13] Fast Adaptive Non-Monotone Submodular Maximization Subject to a Knapsack Constraint
    Amanatidis, Georgios
    Fusco, Federico
    Lazos, Philip
    Leonardi, Stefano
    Reiffenhauser, Rebecca
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2022, 74 : 661 - 690
  • [14] Non-monotone Submodular Maximization under Matroid and Knapsack Constraints
    Lee, Jon
    Mirrokni, Vahab S.
    Nagarajan, Viswanath
    Sviridenko, Maxim
    STOC'09: PROCEEDINGS OF THE 2009 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2009, : 323 - 332
  • [15] Guarantees of Stochastic Greedy Algorithms for Non-monotone Submodular Maximization with Cardinality Constraint
    Sakaue, Shinsaku
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108
  • [16] Group fairness in non-monotone submodular maximization
    Jing Yuan
    Shaojie Tang
    Journal of Combinatorial Optimization, 2023, 45
  • [17] Group fairness in non-monotone submodular maximization
    Yuan, Jing
    Tang, Shaojie
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2023, 45 (03)
  • [18] Online Non-Monotone DR-Submodular Maximization
    Nguyen Kim Thang
    Srivastav, Abhinav
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 9868 - 9876
  • [19] Improved Deterministic Algorithms for Non-monotone Submodular Maximization
    Sun, Xiaoming
    Zhang, Jialin
    Zhang, Shuo
    Zhang, Zhijie
    COMPUTING AND COMBINATORICS, COCOON 2022, 2022, 13595 : 496 - 507
  • [20] Improved deterministic algorithms for non-monotone submodular maximization
    Sun, Xiaoming
    Zhang, Jialin
    Zhang, Shuo
    Zhang, Zhijie
    THEORETICAL COMPUTER SCIENCE, 2024, 984