Nonrelativistic limit of solitary waves for nonlinear Maxwell–Klein–Gordon equations

被引:0
|
作者
Sangdon Jin
Jinmyoung Seok
机构
[1] KAIST,Department of Mathematical Sciences
[2] Kyonggi University,Department of Mathematics
来源
Calculus of Variations and Partial Differential Equations | 2021年 / 60卷
关键词
Maxwell–Klein–Gordon; Schrodinger–Poisson; Nonrelativistic limit; Solitary wave;
D O I
暂无
中图分类号
学科分类号
摘要
We study the nonrelativistic limit of solitary waves from Nonlinear Maxwell–Klein–Gordon equations (NMKG) to Nonlinear Schrödinger–Poisson equations (NSP). It is known that the existence or multiplicity of positive solutions depends on the choices of parameters the equations contain. In this paper, we prove that for a given positive solitary wave of NSP, which is found in Ruiz’s work (J Funct Anal 237(2):655–674, 2006), there corresponds a family of positive solitary waves of NMKG under the nonrelativistic limit. Notably, our results contain a new result of existence of positive solutions to (NMKG) with lower order nonlinearity.
引用
收藏
相关论文
共 50 条
  • [21] Periodic solitary waves for two coupled nonlinear Klein-Gordon and Schrodinger equations
    Hioe, FT
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (26): : 7307 - 7330
  • [22] New solitary waves for the Klein-Gordon-Zakharov equations
    Nestor, Savaissou
    Houwe, Alphonse
    Rezazadeh, Hadi
    Bekir, Ahmet
    Betchewe, Gambo
    Doka, Serge Y.
    MODERN PHYSICS LETTERS B, 2020, 34 (23):
  • [23] THE KLEIN-GORDON-MAXWELL NONLINEAR-SYSTEM OF EQUATIONS
    DEUMENS, E
    PHYSICA D, 1986, 18 (1-3): : 371 - 373
  • [24] The nonlinear Klein-Gordon equation coupled with the Maxwell equations
    Benci, V
    Fortunato, D
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (09) : 6065 - 6072
  • [25] Solitary waves for the perturbed nonlinear Klein-Gordon equation
    Esfahani, Amin
    APPLIED MATHEMATICS LETTERS, 2011, 24 (02) : 204 - 209
  • [26] EHRENFEST THEOREM FOR NONLINEAR KLEIN-GORDON SOLITARY WAVES
    REINISCH, G
    FERNANDEZ, JC
    PHYSICAL REVIEW LETTERS, 1991, 67 (15) : 1968 - 1970
  • [27] Almost global existence for the nonlinear Klein-Gordon equation in the nonrelativistic limit
    Pasquali, S.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (01)
  • [28] ON THE ROTATING NONLINEAR KLEIN-GORDON EQUATION: NONRELATIVISTIC LIMIT AND NUMERICAL METHODS
    Mauser, Norbert J.
    Zhang, Yong
    Zhao, Xiaofei
    MULTISCALE MODELING & SIMULATION, 2020, 18 (02): : 999 - 1024
  • [29] Solitary waves for Klein-Gordon-Maxwell system with external Coulomb potential
    Georgiev, V
    Visciglia, N
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (07): : 957 - 983
  • [30] Description and Classification of 2-Solitary Waves for Nonlinear Damped Klein-Gordon Equations
    Cote, Raphael
    Martel, Yvan
    Yuan, Xu
    Zhao, Lifeng
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 388 (03) : 1557 - 1601