The embedding theorem for Cantor varieties

被引:1
|
作者
Shabunin L.V.
机构
关键词
Mathematical Logic; Word Problem; Basic Operation; Elementary Theory; Embed Theorem;
D O I
10.1023/A:1010268503853
中图分类号
学科分类号
摘要
Let m and n be fixed integers, with 1 ≤ m ≤ n. A Cantor variety Cm,n is a variety of algebras with m n-ary and n m-ary basic operations which is defined in a signature Ω = {g1,...,gm,f1,...,fn} by the identities fi(g1(x1,...,xn),...,gm (x1,...,xn)) = xi, i = 1,...,n, gj(f1(x1,...,xm),...,fn (x1,...,xm)) = xj, j = 1,...,m. We prove the following: (a) every partial Cm,n-algebra A is isomorphically embeddable in the algebra G = 〈A; S (A)〉 of Cm,n; (b) for every finitely presented algebra G = 〈A; S〉 in Cm,n, the word problem is decidable; (c) for finitely presented algebras in Cm,n, the occurrence problem is decidable; (d) Cm,n has a hereditarily undecidable elementary theory. © 2001 Plenum Publishing Corporation.
引用
收藏
页码:194 / 204
页数:10
相关论文
共 50 条
  • [31] EMBEDDING THEOREM FOR RINGS
    BLAIR, WD
    COMMUNICATIONS IN ALGEBRA, 1976, 4 (02) : 193 - 198
  • [32] ON A CONSTANT IN THE EMBEDDING THEOREM
    LONG, BT
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1987, (05): : 84 - 87
  • [33] General Embedding Theorem
    Ramazanov, M. D.
    DOKLADY MATHEMATICS, 2018, 98 (01) : 353 - 356
  • [34] A subgaussian embedding theorem
    Mendelson, Shahar
    Tomczak-Jaegermann, Nicole
    ISRAEL JOURNAL OF MATHEMATICS, 2008, 164 (01) : 349 - 364
  • [35] General Embedding Theorem
    M. D. Ramazanov
    Doklady Mathematics, 2018, 98 : 353 - 356
  • [36] A subgaussian embedding theorem
    Shahar Mendelson
    Nicole Tomczak-Jaegermann
    Israel Journal of Mathematics, 2008, 164 : 349 - 364
  • [37] The trilinear embedding theorem
    Tanaka, Hitoshi
    STUDIA MATHEMATICA, 2015, 227 (03) : 239 - 248
  • [38] Cantor-Kuratowski theorem in admissible spaces
    Souza, Josiney A.
    Alves, Richard W. M.
    TOPOLOGY AND ITS APPLICATIONS, 2019, 252 : 158 - 168
  • [39] Designing a calculational proof of Cantor's theorem
    Dijkstra, EW
    Misra, J
    AMERICAN MATHEMATICAL MONTHLY, 2001, 108 (05): : 440 - 443
  • [40] On Cantor's Theorem for Fuzzy Power Sets
    Holcapek, Michal
    INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS: APPLICATIONS, IPMU 2018, PT III, 2018, 855 : 703 - 714