Sharp observability inequalities for the 1-D plate equation with a potential

被引:0
|
作者
Xiaoyu Fu
机构
[1] Sichuan University,College of Mathematics
[2] Indian Institute of Technology,Department of Mathematics
关键词
Observability inequality; Plate equation; Point-wise estimate; Carleman estimate; 93B05; 93B07;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the problem of sharp observability inequality for the 1-D plate equation wtt + wxxxx + q(t, x)w = 0 with two types of boundary conditions w = wxx = 0 or w = wx = 0, and q(t, x) being a suitable potential. The author shows that the sharp observability constant is of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exp \left( {C\left\| q \right\|_\infty ^{\tfrac{2} {7}} } \right)$$\end{document} for ‖q‖∞ ≥ 1. The main tools to derive the desired observability inequalities are the global Carleman inequalities, based on a new point wise inequality for the fourth order plate operator.
引用
收藏
页码:91 / 106
页数:15
相关论文
共 50 条