Artificial neural networks to optimize the extrusion of an aluminium alloy

被引:0
|
作者
Carmine Lucignano
Roberto Montanari
Vincenzo Tagliaferri
Nadia Ucciardello
机构
[1] University of Rome Tor Vergata,Department of Mechanical Engineering
来源
关键词
Extrusion; Aluminium alloys; Artificial neural network;
D O I
暂无
中图分类号
学科分类号
摘要
Extrusion of aluminium alloys is a complex process which depends on the characteristics of the material and on the process parameters (initial billet temperature, extrusion ratio, friction at the interfaces, die geometry etc.). The temperature profile at the die exit, largely influences microstructure, mechanical properties, and surface quality of an extruded product, consequently it is the most important parameter for controlling the process. In turn the temperature profile depends on other process variables whose right choice is fundamental to avoid surface damage of the extruded product. In the present work, two neural networks were implemented to optimize the aluminium extrusion process determining the temperature profile of an Al 6060 alloy (UNI 9006/1) at the exit of induction heater (ANN1) and at the exit of the die (ANN2). The three-layer neural networks with Levemberg Marquardt algorithm were trained with the experimental data from the industrial process. The temperature profiles, predicted by the neural network, closely agree with experimental values.
引用
收藏
页码:569 / 574
页数:5
相关论文
共 50 条
  • [41] Artificial neural network modelling to predict hot deformation behaviour of zinc-aluminium alloy
    Liu, Y.
    Li, H. Y.
    Jiang, H. F.
    Su, X. J.
    [J]. MATERIALS SCIENCE AND TECHNOLOGY, 2013, 29 (02) : 184 - 189
  • [42] Prediction of tensile strength in friction stir welded aluminium alloy using artificial neural network
    Ghetiya, N. D.
    Patel, K. M.
    [J]. 2ND INTERNATIONAL CONFERENCE ON INNOVATIONS IN AUTOMATION AND MECHATRONICS ENGINEERING, ICIAME 2014, 2014, 14 : 274 - 281
  • [43] Artificial neural networks
    Piuri, V
    Alippi, C
    [J]. JOURNAL OF SYSTEMS ARCHITECTURE, 1998, 44 (08) : 565 - 567
  • [44] ARTIFICIAL NEURAL NETWORKS
    IVALL, T
    [J]. ELECTRONICS WORLD & WIRELESS WORLD, 1990, 96 (1649): : 191 - 193
  • [45] Artificial neural networks
    Partridge, D
    Rae, S
    Wang, WJ
    [J]. JOURNAL OF THE ROYAL SOCIETY OF MEDICINE, 1999, 92 (07) : 385 - 385
  • [46] Artificial Neural Networks
    Andrijic, Z. Ujevic
    [J]. KEMIJA U INDUSTRIJI-JOURNAL OF CHEMISTS AND CHEMICAL ENGINEERS, 2019, 68 (5-6): : 219 - 220
  • [47] Extrusion modelling of 6061 aluminium alloy and particle reinforced MMCs
    Herba, EM
    McQueen, HJ
    [J]. MATERIALS SCIENCE AND TECHNOLOGY, 1998, 14 (9-10) : 1057 - 1064
  • [48] Effect of Punch Diameters on Shear Extrusion of 6063 Aluminium Alloy
    Erinosho, Mutiu F.
    Ojo, Saheed O.
    Ajiboye, Joseph S.
    Akinlabi, Esther T.
    [J]. WORLD CONGRESS ON ENGINEERING, WCE 2015, VOL II, 2015, : 1240 - 1242
  • [49] Extrusion tests of 7075 aluminium alloy at high solid fraction
    G. Vaneetveld
    A. Rassili
    J.-C. Pierret
    J. Lecomte-Beckers
    [J]. International Journal of Material Forming, 2008, 1 : 1019 - 1022
  • [50] Extrusion tests of 7075 aluminium alloy at high solid fraction
    Vaneetveld, G.
    Rassili, A.
    Pierret, J. -C.
    Lecomte-Beckers, J.
    [J]. INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2008, 1 (Suppl 1) : 1019 - 1022