Haldane’s formula in Cannings models: the case of moderately strong selection

被引:0
|
作者
Florin Boenkost
Adrián González Casanova
Cornelia Pokalyuk
Anton Wakolbinger
机构
[1] Goethe-Universität Frankfurt,Instituto de Matemáticas
[2] Universidad Nacional Autónoma de México,undefined
来源
关键词
Branching process approximation; Cannings model; Directional selection; Probability of fixation; Primary 60J10; Secondary 60J80; 92D15; 92D25;
D O I
暂无
中图分类号
学科分类号
摘要
For a class of Cannings models we prove Haldane’s formula, π(sN)∼2sNρ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi (s_N) \sim \frac{2s_N}{\rho ^2}$$\end{document}, for the fixation probability of a single beneficial mutant in the limit of large population size N and in the regime of moderately strong selection, i.e. for sN∼N-b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_N \sim N^{-b}$$\end{document} and 0<b<1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< b<1/2$$\end{document}. Here, sN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_N$$\end{document} is the selective advantage of an individual carrying the beneficial type, and ρ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho ^2$$\end{document} is the (asymptotic) offspring variance. Our assumptions on the reproduction mechanism allow for a coupling of the beneficial allele’s frequency process with slightly supercritical Galton–Watson processes in the early phase of fixation.
引用
收藏
相关论文
共 50 条
  • [1] Haldane's formula in Cannings models: the case of moderately strong selection
    Boenkost, Florin
    Gonzalez Casanova, Adrian
    Pokalyuk, Cornelia
    Wakolbinger, Anton
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2021, 83 (6-7)
  • [2] Haldane's formula in Cannings models: the case of moderately weak selection
    Boenkost, Florin
    Gonzalez Casanova, Adrian
    Pokalyuk, Cornelia
    Wakolbinger, Anton
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26 : 1 - 36
  • [3] Haldane's view of natural selection
    Rao, Veena
    Nanjundiah, Vidyanand
    [J]. JOURNAL OF GENETICS, 2017, 96 (05) : 765 - 772
  • [4] Haldane’s view of natural selection
    Veena Rao
    Vidyanand Nanjundiah
    [J]. Journal of Genetics, 2017, 96 : 765 - 772
  • [5] Multicomponent Rank Selection as an Alternative to Haldane's Dilemma
    Phelps, F.M.
    [J]. Mathematical Medicine and Biology, 1991, 8 (01) : 57 - 72
  • [6] Nucleation preexponential in dynamic Ising models at moderately strong fields
    Shneidman, VA
    Nita, GM
    [J]. PHYSICAL REVIEW E, 2003, 68 (02): : 1 - 021605
  • [7] Models for mandel's formula
    Nadarajah, Saralees
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2008, 44 (01) : 184 - 196
  • [8] Models for Mandel’s formula
    Saralees Nadarajah
    [J]. Journal of Mathematical Chemistry, 2008, 44 : 184 - 196
  • [9] Tweedie's Formula and Selection Bias
    Efron, Bradley
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (496) : 1602 - 1614
  • [10] Gametic selection, developmental trajectories, and extrinsic heterogeneity in Haldane's rule
    Bundus, Joanna D.
    Alaei, Ravin
    Cutter, Asher D.
    [J]. EVOLUTION, 2015, 69 (08) : 2005 - 2017