Stabilizing and destabilizing Heegaard splittings of sufficiently complicated 3-manifolds

被引:0
|
作者
David Bachman
机构
[1] Pitzer College,
来源
Mathematische Annalen | 2013年 / 355卷
关键词
Manifold; Minimal Surface; Boundary Component; Topological Index; Heegaard Splitting;
D O I
暂无
中图分类号
学科分类号
摘要
Let M1 and M2 be compact, orientable 3-manifolds with incompressible boundary, and M the manifold obtained by gluing with a homeomorphism \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi : {\partial}M_1 \to {\partial}M_2}$$\end{document}. We analyze the relationship between the sets of low genus Heegaard splittings of M1, M2, and M, assuming the map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi}$$\end{document} is “sufficiently complicated”. This analysis yields counter-examples to the Stabilization Conjecture, a resolution of the higher genus analogue of a conjecture of Gordon, and a result about the uniqueness of expressions of Heegaard splittings as amalgamations.
引用
收藏
页码:697 / 728
页数:31
相关论文
共 50 条