Linear optimization with cones of moments and nonnegative polynomials

被引:0
|
作者
Jiawang Nie
机构
[1] University of California San Diego,Department of Mathematics
来源
Mathematical Programming | 2015年 / 153卷
关键词
Moment; Nonnegative polynomial; Representing measure; Semidefinite program; Sum of squares; Truncated moment sequence; 65K05; 90C22; 90C26;
D O I
暂无
中图分类号
学科分类号
摘要
Let A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} be a finite subset of Nn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {N}^n$$\end{document} and R[x]A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}[x]_{\mathcal {A}}$$\end{document} be the space spanned by monomials xα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^\alpha $$\end{document} with α∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in \mathcal {A}$$\end{document}. Let K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} be a compact semialgebraic set of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^n$$\end{document} such that a polynomial in R[x]A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}[x]_{\mathcal {A}}$$\end{document} is positive on K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}. Denote by PA(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{P}_{\mathcal {A}}(K)$$\end{document} the cone of polynomials in R[x]A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}[x]_{\mathcal {A}}$$\end{document} that are nonnegative on K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}. The dual cone of PA(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{P}_{\mathcal {A}}(K)$$\end{document} is RA(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{R}_{\mathcal {A}}(K)$$\end{document}, the set of all truncated moment sequences in RA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{\mathcal {A}}$$\end{document} that admit representing measures supported in K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}. First, we study geometric properties of the cones PA(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{P}_{\mathcal {A}}(K)$$\end{document} and RA(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{R}_{\mathcal {A}}(K)$$\end{document} (like interiors, closeness, duality, memberships), and construct a convergent hierarchy of semidefinite relaxations for each of them. Second, we propose a semidefinite algorithm for solving linear optimization problems with the cones PA(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{P}_{\mathcal {A}}(K)$$\end{document} and RA(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{R}_{\mathcal {A}}(K)$$\end{document}, and prove its asymptotic and finite convergence. Third, we show how to check whether PA(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{P}_{\mathcal {A}}(K)$$\end{document} and RA(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{R}_{\mathcal {A}}(K)$$\end{document} intersect affine subspaces; if they do, we show how to get a point in the intersections; if they do not, we prove certificates for the empty intersection.
引用
收藏
页码:247 / 274
页数:27
相关论文
共 50 条
  • [21] Nonnegative trigonometric polynomials
    Dimitrov, DK
    Merlo, CA
    CONSTRUCTIVE APPROXIMATION, 2002, 18 (01) : 117 - 143
  • [22] Polynomials nonnegative on the cylinder
    Scheiderer, Claus
    Wenzel, Sebastian
    ORDERED ALGEBRAIC STRUCTURES AND RELATED TOPICS, 2017, 697 : 291 - 300
  • [23] POLYTOPES OF NONNEGATIVE POLYNOMIALS
    SILJAK, DD
    PROCEEDINGS OF THE 1989 AMERICAN CONTROL CONFERENCE, VOLS 1-3, 1989, : 193 - 199
  • [24] INTERPOLATION BY NONNEGATIVE POLYNOMIALS
    BRIGGS, J
    RUBEL, LA
    JOURNAL OF APPROXIMATION THEORY, 1980, 30 (03) : 160 - 168
  • [25] NONNEGATIVE HALL POLYNOMIALS
    BUTLER, LM
    HALES, AW
    JOURNAL OF ALGEBRAIC COMBINATORICS, 1993, 2 (02) : 125 - 135
  • [26] NONNEGATIVE POLYNOMIALS - A CRITERION
    SILJAK, D
    PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1970, 58 (09): : 1370 - &
  • [27] Linear optimization over homogeneous matrix cones
    Tuncel, Levent
    Vandenberghe, Lieven
    ACTA NUMERICA, 2023, 32 : 675 - 747
  • [28] Nonnegative trigonometric polynomials
    Dimitrov D.K.
    Merlo C.A.
    Constructive Approximation, 2001, 18 (1) : 117 - 143
  • [29] Optimization Over the Boolean Hypercube Via Sums of Nonnegative Circuit Polynomials
    Dressler, Mareike
    Kurpisz, Adam
    de Wolff, Timo
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2022, 22 (02) : 365 - 387
  • [30] Discriminants and nonnegative polynomials
    Nie, Jiawang
    JOURNAL OF SYMBOLIC COMPUTATION, 2012, 47 (02) : 167 - 191