Localization of the limit set of trajectories of the Euler-Bernoulli equation with control

被引:0
|
作者
A. L. Zuev
机构
[1] Ukrainian National Academy of Sciences,Institute of Applied Mathematics and Mechanics
来源
关键词
Feedback Control; Invariance Principle; Elastic Beam; BERNOULLI Equation; Abstract Cauchy Problem;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate a differential equation in a Hilbert space that describes vibrations of the Euler-Bernoulli elastic beam with feedback control. The relative compactness of positive semitrajectories of the considered equation is proved. Constructing a Lyapunov functional in explicit form and using the invariance principle, we obtain representations of limit sets.
引用
下载
收藏
页码:199 / 210
页数:11
相关论文
共 50 条
  • [41] GEVREY CLASS OF LOCALLY DISSIPATIVE EULER-BERNOULLI BEAM EQUATION
    Gomez Avalos, G.
    Rivera, J. Munoz
    Liu, Z.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (03) : 2174 - 2194
  • [42] Noether Symmetry Analysis of the Dynamic Euler-Bernoulli Beam Equation
    Johnpillai, A. G.
    Mahomed, K. S.
    Harley, C.
    Mahomed, F. M.
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (05): : 447 - 456
  • [43] Boundary PID output regulation for Euler-Bernoulli beam equation
    Fan, Xueru
    Xu, Cheng-Zhong
    Kou, Chunhai
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 529 (01)
  • [44] Relation between Euler-Bernoulli equation and contemporary knowledge in robotics
    Filipovic, Mirjana
    ROBOTICA, 2012, 30 : 1 - 13
  • [45] FOURIER METHOD FOR INVERSE COEFFICIENT EULER-BERNOULLI BEAM EQUATION
    Baglan, Irem
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 514 - 527
  • [46] The Euler-Bernoulli equation with distributional coefficients and forces[Formula presented]
    Blommaert, Robin
    Lazendić, Srdan
    Oparnica, Ljubica
    Computers and Mathematics with Applications, 2022, 123 : 171 - 183
  • [48] An inverse spectral problem for the Euler-Bernoulli equation for the vibrating beam
    Papanicolaou, VG
    Kravvaritis, D
    INVERSE PROBLEMS, 1997, 13 (04) : 1083 - 1092
  • [49] A note on the integrability of a remarkable static Euler-Bernoulli beam equation
    Fatima, A.
    Bokhari, Ashfaque H.
    Mahomed, F. M.
    Zaman, F. D.
    JOURNAL OF ENGINEERING MATHEMATICS, 2013, 82 (01) : 101 - 108
  • [50] Inverse Problem for Euler-Bernoulli Equation with Periodic Boundary Condition
    Kanca, Fatma
    Baglan, Irem
    FILOMAT, 2018, 32 (16) : 5691 - 5705