Atomic-scale phase separation induced clustering of solute atoms

被引:0
|
作者
Lianfeng Zou
Penghui Cao
Yinkai Lei
Dmitri Zakharov
Xianhu Sun
Stephen D. House
Langli Luo
Jonathan Li
Yang Yang
Qiyue Yin
Xiaobo Chen
Chaoran Li
Hailang Qin
Eric A. Stach
Judith C. Yang
Guofeng Wang
Guangwen Zhou
机构
[1] State University of New York,Department of Mechanical Engineering & Materials Science and Engineering Program
[2] University of California,Department of Mechanical and Aerospace Engineering
[3] University of Pittsburgh,Department of Mechanical Engineering and Materials Science
[4] Brookhaven National Laboratory,Center for Functional Nanomaterials
[5] University of Pittsburgh,Department of Chemical and Petroleum Engineering
[6] University of Pittsburgh,Environmental TEM Catalysis Consortium (ECC)
[7] Massachusetts Institute of Technology,Department of Nuclear Science and Engineering
[8] University of Pennsylvania,Department of Materials Science and Engineering
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Dealloying typically occurs via the chemical dissolution of an alloy component through a corrosion process. In contrast, here we report an atomic-scale nonchemical dealloying process that results in the clustering of solute atoms. We show that the disparity in the adatom–substrate exchange barriers separate Cu adatoms from a Cu–Au mixture, leaving behind a fluid phase enriched with Au adatoms that subsequently aggregate into supported clusters. Using dynamic, atomic-scale electron microscopy observations and theoretical modeling, we delineate the atomic-scale mechanisms associated with the nucleation, rotation and amorphization–crystallization oscillations of the Au clusters. We expect broader applicability of the results because the phase separation process is dictated by the inherent asymmetric adatom-substrate exchange barriers for separating dissimilar atoms in multicomponent materials.
引用
收藏
相关论文
共 50 条
  • [41] Atomic-scale understanding of stress-induced phase transformation in cold-rolled Hf
    Zhao, Henglv
    Song, Min
    Ni, Song
    Shao, Shuai
    Wang, Jian
    Liao, Xiaozhou
    ACTA MATERIALIA, 2017, 131 : 271 - 279
  • [42] Stability of π-phase in atomic-scale superconductor/magnet multilayered system
    Kanegae, Y
    Ohashi, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2001, 70 (07) : 2124 - 2133
  • [43] Phase transformation via atomic-scale periodic interfacial energy
    Cui, Ye
    Zhang, Yang
    Sun, Lixin
    Feygenson, Mikhail
    Fan, Mingyu
    Wang, Xun-Li
    Liaw, Peter K.
    Baker, Ian
    Zhang, Zhongwu
    Materials Today Physics, 2022, 24
  • [44] Phase transformation via atomic-scale periodic interfacial energy
    Cui, Ye
    Zhang, Yang
    Sun, Lixin
    Feygenson, Mikhail
    Fan, Mingyu
    Wang, Xun-Li
    Liaw, Peter K.
    Baker, Ian
    Zhang, Zhongwu
    MATERIALS TODAY PHYSICS, 2022, 24
  • [45] A scanning tunneling microscopy study of atomic-scale clustering in InAsP/InP heterostructures
    Zuo, SL
    Bi, WG
    Tu, CW
    Yu, ET
    APPLIED PHYSICS LETTERS, 1998, 72 (17) : 2135 - 2137
  • [46] Atomic-scale mechanism for pressure-induced amorphization of β-eucryptite
    Narayanan, Badri
    Reimanis, Ivar E.
    Ciobanu, Cristian V.
    JOURNAL OF APPLIED PHYSICS, 2013, 114 (08)
  • [47] Atomic-scale modeling of nanoconstrictions
    Mukherjee, S
    Litvinov, D
    Khizroev, S
    IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (04) : 2143 - 2145
  • [48] Atomic-scale stick slip
    Bennewitz, R
    Meyer, E
    Bammerlin, M
    Gyalog, T
    Gnecco, E
    FUNDAMENTALS OF TRIBOLOGY AND BRIDGING THE GAP BETWEEN THE MACRO-AND MICRO/NANOSCALES, 2001, 10 : 53 - 66
  • [49] ATOMIC-SCALE SIMULATION OF MICROTECHNOLOGIES
    ROUHANI, MD
    GUE, AM
    CAMON, H
    COHENSOLAL, G
    ONDE ELECTRIQUE, 1994, 74 (02): : 14 - 20
  • [50] Uniform atomic-scale structures
    不详
    AMERICAN CERAMIC SOCIETY BULLETIN, 2004, 83 (05): : 6 - 6