On Focal Submanifolds of Isoparametric Hypersurfaces and Simons Formula

被引:0
|
作者
Qichao Li
Li Zhang
机构
[1] Beijing Normal University,Laboratory of Mathematics and Complex Systems, School of Mathematical Sciences
来源
Results in Mathematics | 2016年 / 70卷
关键词
53A30; 53C42; Isoparametric hypersurface; focal submanifold; semiparallel; normally flat;
D O I
暂无
中图分类号
学科分类号
摘要
The focal submanifolds of isoparametric hypersurfaces in spheres are all minimal Willmore submanifolds, mostly being A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}$$\end{document} -manifolds in the sense of A.Gray but rarely Ricci-parallel, see Li et al. (Sci China Math 58, 2015), Qian et al. (Ann Glob Anal Geom 43:47–62, 2013), Tang and Yan (Isoparametric foliation and a problem of Besse on generalizations of Einstein condition arXiv:1307.3807, 2013). In this paper we study the geometry of the focal submanifolds via Simons formula. We show that all the focal submanifolds with g ≥ 3 are not normally flat by estimating the normal scalar curvatures. Moreover, we give a complete classification of the semiparallel submanifolds among the focal submanifolds.
引用
收藏
页码:183 / 195
页数:12
相关论文
共 50 条
  • [31] Isoparametric hypersurfaces and complex structures
    Zizhou Tang
    Wenjiao Yan
    Acta Mathematica Scientia, 2022, 42 : 2223 - 2229
  • [32] Schiffer problem and isoparametric hypersurfaces
    Shklover, VE
    REVISTA MATEMATICA IBEROAMERICANA, 2000, 16 (03) : 529 - 569
  • [33] A note on Blaschke isoparametric hypersurfaces
    Li, Tongzhu
    Wang, Changping
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2014, 25 (12)
  • [34] Isoparametric Hypersurfaces and Complex Structures
    Tang, Zizhou
    Yan, Wenjiao
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (06) : 2223 - 2229
  • [35] On the Chern conjecture for isoparametric hypersurfaces
    Zizhou Tang
    Wenjiao Yan
    Science China Mathematics, 2023, 66 : 143 - 162
  • [36] A CHARACTERIZATION OF ISOPARAMETRIC HYPERSURFACES IN SPHERES
    CARTER, S
    WEST, A
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1982, 26 (AUG): : 183 - 192
  • [37] ISOPARAMETRIC HYPERSURFACES AND COMPLEX STRUCTURES
    唐梓洲
    彦文娇
    ActaMathematicaScientia, 2022, 42 (06) : 2223 - 2229
  • [38] Isoparametric hypersurfaces in product spaces
    dos Santos, Joao Batista Marques
    dos Santos, Joao Paulo
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2023, 88
  • [39] On the Chern conjecture for isoparametric hypersurfaces
    Zizhou Tang
    Wenjiao Yan
    ScienceChina(Mathematics), 2023, 66 (01) : 143 - 162
  • [40] Isoparametric hypersurfaces in Funk spaces
    HE Qun
    YIN SongTing
    SHEN YiBing
    Science China(Mathematics), 2017, 60 (12) : 2447 - 2464