The focal submanifolds of isoparametric hypersurfaces in spheres are all minimal Willmore submanifolds, mostly being A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal{A}}$$\end{document} -manifolds in the sense of A.Gray but rarely Ricci-parallel, see Li et al. (Sci China Math 58, 2015), Qian et al. (Ann Glob Anal Geom 43:47–62, 2013), Tang and Yan (Isoparametric foliation and a problem of Besse on generalizations of Einstein condition arXiv:1307.3807, 2013). In this paper we study the geometry of the focal submanifolds via Simons formula. We show that all the focal submanifolds with g ≥ 3 are not normally flat by estimating the normal scalar curvatures. Moreover, we give a complete classification of the semiparallel submanifolds among the focal submanifolds.