On Focal Submanifolds of Isoparametric Hypersurfaces and Simons Formula

被引:0
|
作者
Qichao Li
Li Zhang
机构
[1] Beijing Normal University,Laboratory of Mathematics and Complex Systems, School of Mathematical Sciences
来源
Results in Mathematics | 2016年 / 70卷
关键词
53A30; 53C42; Isoparametric hypersurface; focal submanifold; semiparallel; normally flat;
D O I
暂无
中图分类号
学科分类号
摘要
The focal submanifolds of isoparametric hypersurfaces in spheres are all minimal Willmore submanifolds, mostly being A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}$$\end{document} -manifolds in the sense of A.Gray but rarely Ricci-parallel, see Li et al. (Sci China Math 58, 2015), Qian et al. (Ann Glob Anal Geom 43:47–62, 2013), Tang and Yan (Isoparametric foliation and a problem of Besse on generalizations of Einstein condition arXiv:1307.3807, 2013). In this paper we study the geometry of the focal submanifolds via Simons formula. We show that all the focal submanifolds with g ≥ 3 are not normally flat by estimating the normal scalar curvatures. Moreover, we give a complete classification of the semiparallel submanifolds among the focal submanifolds.
引用
收藏
页码:183 / 195
页数:12
相关论文
共 50 条