Randomized Incremental Construction of Delaunay Triangulations of Nice Point Sets

被引:0
|
作者
Jean-Daniel Boissonnat
Olivier Devillers
Kunal Dutta
Marc Glisse
机构
[1] Université Côte d’Azur,Department of Informatics
[2] INRIA Sophia-Antipolis,undefined
[3] INRIA,undefined
[4] CNRS,undefined
[5] Loria,undefined
[6] Université de Lorraine,undefined
[7] University of Warsaw,undefined
[8] INRIA,undefined
[9] Université Paris-Saclay,undefined
来源
关键词
Randomized incremental construction; Delaunay triangulations; Voronoi diagrams; Flat torus; Polyhedral surfaces; Probabilistic analysis; 52-08; 52C45; 52C15; 52C17; 68Q87;
D O I
暂无
中图分类号
学科分类号
摘要
Randomized incremental construction (RIC) is one of the most important paradigms for building geometric data structures. Clarkson and Shor developed a general theory that led to numerous algorithms which are both simple and efficient in theory and in practice. Randomized incremental constructions are usually space-optimal and time-optimal in the worst case, as exemplified by the construction of convex hulls, Delaunay triangulations, and arrangements of line segments. However, the worst-case scenario occurs rarely in practice and we would like to understand how RIC behaves when the input is nice in the sense that the associated output is significantly smaller than in the worst case. For example, it is known that the Delaunay triangulation of nicely distributed points in Ed\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}^d$$\end{document} or on polyhedral surfaces in E3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}^3$$\end{document} has linear complexity, as opposed to a worst-case complexity of Θ(n⌊d/2⌋)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta (n^{\lfloor d/2\rfloor })$$\end{document} in the first case and quadratic in the second. The standard analysis does not provide accurate bounds on the complexity of such cases and we aim at establishing such bounds in this paper. More precisely, we will show that, in the two cases above and variants of them, the complexity of the usual RIC is O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n\log n)$$\end{document}, which is optimal. In other words, without any modification, RIC nicely adapts to good cases of practical value. At the heart of our proof is a bound on the complexity of the Delaunay triangulation of random subsets of ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon }$$\end{document}-nets. Along the way, we prove a probabilistic lemma for sampling without replacement, which may be of independent interest.
引用
收藏
页码:236 / 268
页数:32
相关论文
共 50 条
  • [21] A Note on Point Location in Delaunay Triangulations of Random Points
    L. Devroye
    E. P. Mücke
    Algorithmica, 1998, 22 : 477 - 482
  • [22] Incremental Construction of the Delaunay Triangulation and the Delaunay Graph in Medium Dimension
    Boissonnat, Jean-Daniel
    Devillers, Olivier
    Hornus, Samuel
    PROCEEDINGS OF THE TWENTY-FIFTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SCG'09), 2009, : 208 - 216
  • [23] Improvements to randomized incremental Delaunay insertion
    Kolingerová, I
    Zalik, B
    COMPUTERS & GRAPHICS-UK, 2002, 26 (03): : 477 - 490
  • [24] On the number of triangulations of planar point sets
    Seidel, R
    COMBINATORICA, 1998, 18 (02) : 297 - 299
  • [25] Counting Triangulations of Planar Point Sets
    Sharir, Micha
    Sheffer, Adam
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [26] I/O-Efficient construction of constrained Delaunay triangulations
    Agarwal, PK
    Arge, L
    Yi, K
    ALGORITHMS - ESA 2005, 2005, 3669 : 355 - 366
  • [27] On degrees in random triangulations of point sets
    Sharir, Micha
    Sheffer, Adam
    Welzl, Emo
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (07) : 1979 - 1999
  • [28] On Degrees in Random Triangulations of Point Sets
    Sharir, Micha
    Sheffer, Adam
    Welzl, Emo
    PROCEEDINGS OF THE TWENTY-SIXTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SCG'10), 2010, : 297 - 306
  • [29] The number of triangulations on planar point sets
    Welzl, Emo
    GRAPH DRAWING, 2007, 4372 : 1 - 4
  • [30] Fast randomized point location without preprocessing in two- and three-dimensional Delaunay triangulations
    Mücke, EP
    Saias, I
    Zhu, B
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1999, 12 (1-2): : 63 - 83