Randomized Incremental Construction of Delaunay Triangulations of Nice Point Sets

被引:0
|
作者
Jean-Daniel Boissonnat
Olivier Devillers
Kunal Dutta
Marc Glisse
机构
[1] Université Côte d’Azur,Department of Informatics
[2] INRIA Sophia-Antipolis,undefined
[3] INRIA,undefined
[4] CNRS,undefined
[5] Loria,undefined
[6] Université de Lorraine,undefined
[7] University of Warsaw,undefined
[8] INRIA,undefined
[9] Université Paris-Saclay,undefined
来源
关键词
Randomized incremental construction; Delaunay triangulations; Voronoi diagrams; Flat torus; Polyhedral surfaces; Probabilistic analysis; 52-08; 52C45; 52C15; 52C17; 68Q87;
D O I
暂无
中图分类号
学科分类号
摘要
Randomized incremental construction (RIC) is one of the most important paradigms for building geometric data structures. Clarkson and Shor developed a general theory that led to numerous algorithms which are both simple and efficient in theory and in practice. Randomized incremental constructions are usually space-optimal and time-optimal in the worst case, as exemplified by the construction of convex hulls, Delaunay triangulations, and arrangements of line segments. However, the worst-case scenario occurs rarely in practice and we would like to understand how RIC behaves when the input is nice in the sense that the associated output is significantly smaller than in the worst case. For example, it is known that the Delaunay triangulation of nicely distributed points in Ed\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}^d$$\end{document} or on polyhedral surfaces in E3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}^3$$\end{document} has linear complexity, as opposed to a worst-case complexity of Θ(n⌊d/2⌋)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta (n^{\lfloor d/2\rfloor })$$\end{document} in the first case and quadratic in the second. The standard analysis does not provide accurate bounds on the complexity of such cases and we aim at establishing such bounds in this paper. More precisely, we will show that, in the two cases above and variants of them, the complexity of the usual RIC is O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n\log n)$$\end{document}, which is optimal. In other words, without any modification, RIC nicely adapts to good cases of practical value. At the heart of our proof is a bound on the complexity of the Delaunay triangulation of random subsets of ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon }$$\end{document}-nets. Along the way, we prove a probabilistic lemma for sampling without replacement, which may be of independent interest.
引用
收藏
页码:236 / 268
页数:32
相关论文
共 50 条
  • [1] Randomized Incremental Construction of Delaunay Triangulations of Nice Point Sets
    Boissonnat, Jean-Daniel
    Devillers, Olivier
    Dutta, Kunal
    Glisse, Marc
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 66 (01) : 236 - 268
  • [2] Randomized Incremental Construction of Delaunay Triangulations of Nice Point Sets
    Boissonnat, Jean-Daniel
    Devillers, Olivier
    Dutta, Kunal
    Glisse, Marc
    [J]. 27TH ANNUAL EUROPEAN SYMPOSIUM ON ALGORITHMS (ESA 2019), 2019, 144
  • [3] Nice point sets can have nasty delaunay triangulations
    Erickson, J
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2003, 30 (01) : 109 - 132
  • [4] Nice Point Sets Can Have Nasty Delaunay Triangulations
    [J]. Discrete & Computational Geometry, 2003, 30 : 109 - 132
  • [5] Fast segment insertion and incremental construction of constrained Delaunay triangulations
    Shewchuk, Jonathan Richard
    Brown, Brielin C.
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2015, 48 (08): : 554 - 574
  • [6] Fast Segment Insertion and Incremental Construction of Constrained Delaunay Triangulations
    Shewchuk, Jonathan Richard
    Brown, Brielin C.
    [J]. PROCEEDINGS OF THE TWENTY-NINETH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SOCG'13), 2013, : 299 - 308
  • [7] FUNCTIONALS ON TRIANGULATIONS OF DELAUNAY SETS
    Dolbilin, Nikolay P.
    Edelsbrunner, Herbert
    Glazyrin, Alexey
    Musin, Oleg R.
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2014, 14 (03) : 491 - 504
  • [8] RANDOMIZED INCREMENTAL CONSTRUCTION OF DELAUNAY AND VORONOI DIAGRAMS
    GUIBAS, LJ
    KNUTH, DE
    SHARIR, M
    [J]. ALGORITHMICA, 1992, 7 (04) : 381 - 413
  • [9] RANDOMIZED INCREMENTAL CONSTRUCTION OF DELAUNAY AND VORONOI DIAGRAMS
    GUIBAS, LJ
    KNUTH, DE
    SHARIR, M
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1990, 443 : 414 - 431
  • [10] Dense point sets have sparse delaunay triangulations or "...but not too nasty"
    Erickson, J
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2005, 33 (01) : 83 - 115