Optimal reparametrization and large sample likelihood inference for the location-scale skew-normal model

被引:0
|
作者
Rolando Cavazos-Cadena
Graciela M. González-Farías
机构
[1] Universidad Autónoma Agraria Antonio Narro,Departamento de Estadística y Cálculo
[2] Centro de Invastigación en Matemáticas A. C.,undefined
来源
关键词
singular information matrix; linear dependence restrictions; probability approximations for maximum likelihood estimators; asymptotic independence; 62H12; 62H15;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by results in Rotnitzky et al. (2000), a family of parametrizations of the location-scale skew-normal model is introduced, and it is shown that, under each member of this class, the hypothesis H0: λ = 0 is invariant, where λ is the asymmetry parameter. Using the trace of the inverse variance matrix associated to a generalized gradient as a selection index, a subclass of optimal parametrizations is identified, and it is proved that a slight variant of Azzalini’s centred parametrization is optimal. Next, via an arbitrary optimal parametrization, a simple derivation of the limit behavior of maximum likelihood estimators is given under H0, and the asymptotic distribution of the corresponding likelihood ratio statistic for this composite hypothesis is determined.
引用
收藏
页码:181 / 211
页数:30
相关论文
共 50 条
  • [41] Exact inference for the parameters of absolutely continuous trivariate exponential location-scale model
    George, Roshini
    Thobias, S.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (17) : 6021 - 6031
  • [42] Tangency portfolio weights under a skew-normal model in small and large dimensions
    Javed, Farrukh
    Mazur, Stepan
    Thorsen, Erik
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2024, 75 (07) : 1395 - 1406
  • [43] Bootstrap inference of the skew-normal two-way classification random effects model with interaction
    Ren-dao Ye
    Na An
    Kun Luo
    Ya Lin
    Applied Mathematics-A Journal of Chinese Universities, 2022, 37 : 435 - 452
  • [44] Bootstrap inference for unbalanced one-way classification model with skew-normal random effects
    Ye, Rendao
    Du, Weixiao
    Lu, Yiting
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (10) : 4976 - 4997
  • [45] Bootstrap inference of the skew-normal two-way classification random effects model with interaction
    YE Ren-dao
    AN Na
    LUO Kun
    LIN Ya
    AppliedMathematics:AJournalofChineseUniversities, 2022, 37 (03) : 435 - 452
  • [46] Bootstrap inference of the skew-normal two-way classification random effects model with interaction
    Ye Ren-dao
    An Na
    Luo Kun
    Lin Ya
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2022, 37 (03) : 435 - 452
  • [47] Cause-Effect Inference in Location-Scale Noise Models: Maximum Likelihood vs. Independence Testing
    Sun, Xiangyu
    Schulte, Oliver
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [48] Bootstrap Tests for the Location Parameter under the Skew-Normal Population with Unknown Scale Parameter and Skewness Parameter
    Ye, Rendao
    Fang, Bingni
    Du, Weixiao
    Luo, Kun
    Lu, Yiting
    MATHEMATICS, 2022, 10 (06)
  • [49] Large sample confidence intervals for the skewness parameter of the skew-normal distribution based on Fisher's transformation
    Mameli, Valentina
    Musio, Monica
    Sauleau, Erik
    Biggeri, Annibale
    JOURNAL OF APPLIED STATISTICS, 2012, 39 (08) : 1693 - 1702
  • [50] Bootstrap inference for skew-normal unbalanced heteroscedastic one-way classification random effects model
    Ye, Rendao
    Du, Weixiao
    Lu, Yiting
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (15) : 2672 - 2702