Optimal reparametrization and large sample likelihood inference for the location-scale skew-normal model

被引:0
|
作者
Rolando Cavazos-Cadena
Graciela M. González-Farías
机构
[1] Universidad Autónoma Agraria Antonio Narro,Departamento de Estadística y Cálculo
[2] Centro de Invastigación en Matemáticas A. C.,undefined
来源
关键词
singular information matrix; linear dependence restrictions; probability approximations for maximum likelihood estimators; asymptotic independence; 62H12; 62H15;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by results in Rotnitzky et al. (2000), a family of parametrizations of the location-scale skew-normal model is introduced, and it is shown that, under each member of this class, the hypothesis H0: λ = 0 is invariant, where λ is the asymmetry parameter. Using the trace of the inverse variance matrix associated to a generalized gradient as a selection index, a subclass of optimal parametrizations is identified, and it is proved that a slight variant of Azzalini’s centred parametrization is optimal. Next, via an arbitrary optimal parametrization, a simple derivation of the limit behavior of maximum likelihood estimators is given under H0, and the asymptotic distribution of the corresponding likelihood ratio statistic for this composite hypothesis is determined.
引用
收藏
页码:181 / 211
页数:30
相关论文
共 50 条